Kerby-Kirpich Method

Roussel et al. 2005 conclude that, in general, Kirpich-inclusive approaches, [and particularly] the Kerby-Kirpich approach, for estimating watershed time of concentration are preferable. The Kerby-Kirpich approach requires comparatively few input parameters, is straightforward to apply, and produces readily interpretable results. The Kerby-Kirpich approach produces time of concentration estimates consistent with watershed time values independently derived from real-world storms and runoff hydrographs. Similar to other methods for calculation of t
c
, the total time of concentration is obtained by adding the overland flow time (Kerby) and the channel flow time (Kirpich):
EquationObject2132
Equation 4-13.
Where:
t
ov
= overland flow time
t
ch
= channel flow time
The Kerby-Kirpich method for estimating t
c
is applicable to watersheds ranging from 0.25 square miles to 150 square miles, main channel lengths between 1 and 50 miles, and main channel slopes between 0.002 and 0.02 (ft/ft) (Roussel et al. 2005).
Main channel slope is computed as the change in elevation from the watershed divide to the watershed outlet divided by the curvilinear distance of the main channel (primary flow path) between the watershed divide and the outlet.
No watersheds with low topographic slopes are available in the underlying database. Therefore, the Kerby and Kerpich methods are not usually applicable to watersheds with limited topographic slope. However, Cleveland et al. 2012 makes recommendations for adjustments to the method to allow more realistic results for low topographic slope watersheds. See Time of Concentration.