300 Items

Surface Courses and Pavements

Item 300 Asphalts, Oils, and Emulsions

1. DESCRIPTION

Provide asphalt cements, cutback and emulsified asphalts, performance-graded asphalt binders, and other miscellaneous asphalt materials as shown on the plans.

2. MATERIALS

Provide asphalt materials that meet the stated requirements when tested in conformance with the referenced Department, AASHTO, and ASTM test methods. Use asphalt containing recycled materials only if the recycled components meet the requirements of Article 6.9., "Recycled Materials." Provide asphalt materials that the Department has preapproved for use in accordance with <u>Tex-545-C</u>.

Inform the Department of all additives or modifiers included in the asphalt binder as part of the facility quality plan, as required by <u>Tex-545-C</u>, and provide that information to Department personnel. The Department reserves the right to prohibit the use of any asphalt additive or modifier.

Limit the use of polyphosphoric acid to no more than 0.5% by weight of the asphalt binder.

The use of re-refined engine oil bottoms is prohibited.

Acronyms used in this Item are defined in Table 1.

	Acronyms
Acronym	Definition
	Test Procedure Designations
Tex	Department
T or R	AASHTO
D	ASTM
	Polymer Modifier Designations
Р	polymer-modified
SBS	styrene-butadiene-styrene block co-polymer
TR	tire rubber modifier (obtained from ground truck and passenger
	vehicle post-consumer tires)
AC	asphalt cement
AE	asphalt emulsion
AE-P	asphalt emulsion prime
A-R	asphalt-rubber
ARA	emulsified asphalt recycling agent
С	cationic
CRM	crumb rubber modifier
CSS	cationic slow setting
EAP&T	emulsified asphalt prime and tack
EBL	emulsified bonding layer
FDR	full-depth reclamation
H-suffix	harder residue (lower penetration)
HA	hot-applied
HF	high float
HRSS	hard residue surface sealant
HY	high yield

Table 1

Acronym	Definition
MC	medium-curing
MS	medium-setting
MSCR	multiple stress creep recovery
NT	non-tracking
PCE	prime, cure, and erosion control
PG	performance grade
RC	rapid-curing
RS	rapid-setting
S-suffix	stockpile usage
SCM	special-use cutback material
SS	slow-setting
SY	standard yield
TRAIL	tracking resistant asphalt interlayer

2.1.

Asphalt Cement. Provide AC that is homogeneous, water-free, and non-foaming when heated to 347°F, and in accordance with Table 2.

	Asphalt Ceme	nt						
	Test	Viscosity Grade						
Property	Procedure	AC	-0.6	AC	-1.5			
	Flocedule	Min	Max	Min	Max			
Viscosity	T 202							
140°F, poise		40	80	100	200			
275°F, poise		0.4	-	0.7	-			
Penetration, 77°F, 100g, 5 sec.	T 49	350	-	250	-			
Flash point, C.O.C., °F	T 48	425	-	425	-			
Solubility, %	T 44	99.0	-	99.0	-			
Spot test	<u>Tex-509-C</u>	Ne	eg.	N	eg.			
Tests on residue from RTFOT:	T 240							
Viscosity, 140°F, poise	T 202	-	400	-	1,000			
Ductility, ¹ 77°F	T 51	100	-	100	-			
5 cm/min., cm								

Table 2	
snhalt Cement	

 If AC-0.6 or AC-1.5 ductility at 77°F is less than 100 cm, material is acceptable if ductility at 60°F is more than 100 cm.

2.2. **Polymer-Modified Asphalt Cement**. Provide polymer-modified AC that is smooth, homogeneous, and meets the requirements shown in Table 3. Supply samples of the base AC and polymer additives if requested.

	Test						-Modifi	ed Visc	osity G	irade			
Property	Test Procedure	AC-12	2-5TR	NT-	HA ¹	AC	-15P	AC-	20XP	AC-1	0-2TR	AC-2	0-5TR
_	Procedure	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Polymer		Т	R	-	-	S	BS	S	BS	٦	R	Т	R
Polymer content, % (solids basis)	<u>Tex-533-C</u> or <u>Tex-553-C</u>	5.0	Ι	-	_	3.0	-	-	-	2.0	-	5.0	-
Dynamic shear, G*/sin δ , 82°C, 10 rad/s, kPa	T 315	-	-	1.0	-	-	-	-	-	-	-	-	-
Dynamic shear, G*/sin δ , 64°C, 10 rad/s, kPa	T 315	-	-	Ι	-	-	-	1.0	-	-	-	1.0	-
Dynamic shear, G*/sin δ , 58°C, 10 rad/s, kPa	T 315	1.0	Ι	-	-	-	-	-	-	1.0	-	-	-
Viscosity 140°F, poise 275°F, poise 275°F, Pa-s	T 202 T 202 T 316	1,200 _			- - 4.0	1,500 _	_ 8.0	2,000 -	-	1,000 _	_ 8.0	2,000 -	_ 10.0
Penetration, 77°F, 100 g, 5 sec.	T 49	110	150	_	25	100	150	75	115	95	130	75	115
Elastic recovery, 50°F, %	Tex-539-C	55	-	_	-	55	-	55	_	30	-	55	_
Polymer separation	Tex-540-C	No	ne	-	_	No	one	No	one	No	one	No	one
Flash point, C.O.C., °F	T 48	425	-	425	-	425	-	425	-	425	-	425	-
Tests on residue from RTFOT aging and pressure aging: Creep stiffness	T 240 and R 28 T 313												
S, -18°C, MPa m-value, -18°C	1 010	_ 0.300	300 _	-	-	_ 0.300	300 _	_ 0.300	300 _	_ 0.300	300 _	_ 0.300	300 _

Table 3 Polymer-Modified Asphalt Cement

1. This is a hot-applied TRAIL product.

2.3.

Cutback Asphalt. Provide cutback asphalt that meets the requirements shown in Tables 4, 5, and 6 for the specified type and grade. Supply samples of the base AC and polymer additives if requested.

Rapid-Curing Cutb	Procedure Min Max 40°F, cSt T 201 250 400 D95 - 0.2 T 79 80 - ge by volume of 0°F T 78 - lation, volume % 70 - sidue: 70 - oise T 202 600 2,400 , 77°F, cm T 51 100 -					
	Teet	Type–Grade				
Property		RC	-250			
	Procedure	Min	Max			
Kinematic viscosity, 140°F, cSt	T 201	250	400			
Water, %	D95	I	0.2			
Flash point, T.O.C., °F	T 79	80	-			
Distillation test:	T 78					
Distillate, percentage by volume of						
total distillate to 680°F						
to 437°F		40	75			
to 500°F		65	90			
to 600°F		85	-			
Residue from distillation, volume %		70	-			
Tests on distillation residue:						
Viscosity, 140°F, poise	T 202	600	2,400			
Ductility, 5 cm/min., 77°F, cm	T 51	100	-			
Solubility, %	T 44	99.0	-			
Spot test	<u>Tex-509-C</u>	Ne	eg.			

Table 4 Repid Curing Cuthook Apphal

weulum-curing	outpack Aspir	απ								
	Teet	Type–Grade								
Property	Test	M	C-30	MC-800		MC-3000				
	Procedure	Min	Max	Min	Max	Min	Max			
Kinematic viscosity, 140°F, cSt	T 201	30	60	800	1,600	3,000	6,000			
Water, %	D95	-	0.2	-	0.2	-	0.2			
Flash point, T.O.C., °F	T 79	95	-	140	-	149	-			
Distillation test:	T 78									
Distillate, percentage by volume of total										
distillate to 680°F										
to 437°F		-	35	-	-	-	-			
to 500°F		30	75	-	40	-	15			
to 600°F		75	95	45	85	15	75			
Residue from distillation, volume %		50	-	75	-	80	-			
Tests on distillation residue:										
Viscosity, 140°F, poise	T 202	300	1,200	300	1,200	300	1,200			
Ductility, 5 cm/min., 77°F, cm	T 51	100	-	100	-	100	-			
Solubility, %	T 44	99.0	-	99.0	-	99.0	-			
Spot test	<u>Tex-509-C</u>	N	eg.	Ne	èg.	Ne	eg.			

Table 5 Medium-Curing Cutback Asphalt

Table 6 Special-Use Cutback Asphalt

Property	Test	Type–0 SCI	
linoperty	Procedure	Min	Max
Kinematic viscosity, 140°F, cSt	T 201	500	1,000
Water, %	D95	-	0.2
Flash point, T.O.C., °F	T 79	175	-
Distillation test:	T 78		
Distillate, percentage by volume of total distillate to 680°F			
to 437°F		-	-
to 500°F		-	0.5
to 600°F		20	60
Residue from distillation, volume %		76	-
Tests on distillation residue:			
Penetration, 100 g, 5 sec., 77°F	T 49	180	-
Solubility, %	T 44	99.0	–

2.4. **Emulsified Asphalt**. Provide emulsified asphalt that is homogeneous, does not separate after thorough mixing, and meets the requirements for the specified type and grade shown in Tables 7, 8, 9, 10, and 10A–C.

	Emulsif	ied As	phalt												
					Type-	Grade	Slow-Setting SS-1 SS-1H Max Min Max 100 20 100 - - - 0.1 - 0.1 20 - - 0.1 - 0.1 20 - 2.0 - - - 1 - 1 23ss Pass Pass								
Property	Test Procedure		Rapid- Setting		Medium- Setting		Slow-Setting								
	FIOCEUUIE	HFF	RS-2	MS	5-2	SS	S-1	SS	-1H						
		Min	Max	Min	Max	Min	Max	Min	Max						
Viscosity, Saybolt Furol	T 72														
77°F, sec.		-	-	-	-	20	100	20	100						
122°F, sec.		150	400	100	300	-	-	-	-						
Sieve test, %	T 59	-	0.1	-	0.1	-	0.1	-	0.1						
Miscibility	T 59	-	– – Pass		Pass		Pass								
Cement mixing, %	T 59	-	-	-	-	-	2.0	-	2.0						
Demulsibility, 35 mL of 0.02 N	T 59	50	_	_	30	_	_	_	_						
CaCl ₂ , %															
Storage stability, 1 day, %	T 59	-	1	-	1	-	i !	-							
Freezing test, 3 cycles ¹	T 59	-	-	Pa	SS	Pa	ass	Pa	SS						
Distillation test:	T 59														
Residue by distillation, % by wt.		65	-	65	-	60	-	60	-						
Oil distillate, % by volume of		_	0.5	_	0.5	_	0.5	_	0.5						
emulsion			0.0		0.0		0.0		0.0						
Tests on residue from distillation:															
Penetration, 77°F, 100 g, 5 sec.	T 49	100	140	90	160	90	160	40	100						
Solubility, %	T 44	97.5	-	97.5	-	97.5	-	97.5	-						
Ductility, 77°F, 5 cm/min., cm	T 51	100	-	100	-	100	-	80	-						
Float test, 140°F, sec.	T 50	1,200	-	-	-	-	-	-	-						

Table 7 Emulsified Asphalt

1. Applies only when the Engineer designates material for winter use.

	Type–Grade									
Property	Test Procedure	Rapid- Setting		Medium- Setting				Setting		
	ricocaure	CR	S-2	CM	S-2	CS	<u>S-1</u>	CS	S-1H	
		Min	Max	Min	Max	Min	Max	CS Min 20 - - - -	Max	
Viscosity, Saybolt Furol										
77°F, sec.	T 72	-	-	-	-	20	100	20	100	
122°F, sec.		150	400	100	350	-	-	-	-	
Sieve test, %	T 59	-	0.1	-	0.1	-	0.1	-	0.1	
Cement mixing, %	T 59	-	-	_	-	_	0.2	-	0.2	
Coating ability and water resistance:										
Dry aggregate/after spray	T 59	T 59 – –		Good/Fair		_		_		
Wet aggregate/after spray				Fair	Fair/Fair		-		_	
Demulsibility, 35 mL of 0.8%	T 59	70								
Sodium dioctyl sulfosuccinate, %	1 59	10	-	-	-	-	-	-	-	
Storage stability, 1 day, %	T 59	-	1	_	1	_	1	-	1	
Particle charge	T 59	Pos	itive	Pos	itive	Pos	itive	Pos	sitive	
Distillation test:										
Residue by distillation, % by wt.	Τ 50	65	-	65	-	60	_	60	_	
Oil distillate, % by volume of	T 59	-	0.5	_	7	_	0.5	-	0.5	
emulsion										
Tests on residue from distillation:										
Penetration, 77°F, 100 g, 5 sec.	T 49	90	160	90	200	90	160	40	110	
Solubility, %	T 44	97.5	_	97.5	_	97.5	_	97.5	_	
Ductility, 77°F, 5 cm/min., cm	T 51	100	_	100	_	100	_	80	_	

Table 8 Cationic Emulsified Asphalt

Polymer-woamed Emuls	neu Aspilait				
		Туре–0	Grade		
Property	Test	Rapid-Setting			
Fioperty	Procedure	HFRS	6-2P		
		Min	Max		
Viscosity, Saybolt Furol	T 72				
122°F, sec.		150	400		
Sieve test, %	T 59	-	0.1		
Demulsibility, 35 mL of 0.02 N CaCl ₂ , %	T 59	50	-		
Storage stability, 1 day, %	T 59	-	1		
Distillation test:1	T 59				
Residue by distillation, % by wt.		65	-		
Oil distillate, % by volume of emulsion		-	0.5		
Tests on residue from distillation:					
Polymer content, wt. % (solids basis)	Tex-533-C	3.0	-		
Penetration, 77°F, 100 g, 5 sec.	T 49	90	140		
Solubility, %	T 44	97.0	-		
Viscosity, 140°F, poise	T 202	1,500	-		
Float test, 140°F, sec.	T 50	1,200	-		
Ductility, ² 39.2°F, 5 cm/min., cm	T 51	50	-		
Elastic recovery, ² 50°F, %	<u>Tex-539-C</u>	55	-		

Table 9 Polymer-Modified Emulsified Asphalt

Exception to T 59: Bring the temperature on the lower thermometer slowly to 350 ± 10°F. Maintain at this temperature for 20 min. Complete total distillation in 60 ± 5 min. from the first application of heat.
 HFRS-2P must meet one of either the ductility or elastic recovery

requirements.

							Type-0	Grade					
Bronorty	Test			Rapid-	Setting	3		M	edium	Settin	g	Slow-Setting	
Property	Procedure	CRS	-2P	CHFR	S-2P	CRS	-2TR	CMS	-1P ³	CMS	5-2P ³	CS	S-1P
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol	T 72												
77°F, sec.		-	-	-	-			10	100	-	-	20	100
122°F, sec.		150	400	100	400	150	500	-	-	50	400	-	-
Sieve test, %	T 59	-	0.1	-	0.1		0.1	-	0.1	-	0.1	-	0.1
Demulsibility, 35 ml of 0.8% sodium	T 59	70	_	60	_	40							
dioctyl sulfosuccinate, %		70	-	00	-	40		-	-	-	-	-	-
Storage stability, 1 day, %	T 59	-	1	-	1		1	-	1	-	1	-	1
Particle charge	T 59	Posi	tive	Posi	tive	Pos	itive	Posi	tive	Pos	itive	Po	sitive
Distillation test ¹ :	T 59												
Residue by distillation, % by weight		65	-	65	-	65		30	-	60	-	62	-
Oil distillate, % by volume of		-	0.5	-	0.5		3	-	0.5	-	0.5	-	0.5
emulsion													
Tests on residue from distillation:													
Polymer content, wt. % (solids basis)	<u>Tex-533-C</u> or <u>Tex-553-C</u>	3.0	-	3.0	-	5.04		-	-	-	-	3.0	-
Penetration, 77°F, 100 g, 5 sec.	T 49	90	150	80	130	90	150	30	-	30	-	55	90
Viscosity, 140°F, poise	T 202	1,300	-	1,300	-	1,000		-	-	-	-	-	-
Solubility, %	T 44	97.0	-	95.0	-	98		-	-	-	-	97.0	-
Ductility, 77°F, 5 cm/min., cm	T 51	-	-	-	-	40		-	-	-	-	70	-
Float test, 140°F, sec.	T 50	-	-	1,800	-			-	-	-	-		
Ductility, ² 39.2°F, 5 cm/min., cm	T 51	50	-	-	-			-	-	-	-	-	-
Elastic recovery, ² 50°F, %	<u>Tex-539-C</u>	55	-	55	-			-	-	-	-	-	-
Tests on residue from evaporative	R 78,												
recovery:	Procedure B												
Nonrecoverable creep compliance of		-	-	-	-	-	-	-	2.0	-	4.0	-	-
residue, 3.2 kPa, 52°C, kPa ⁻¹	T 350												

Table 10 Polymer-Modified Cationic Emulsified Asphalt

Exception to T 59: Bring the temperature on the lower thermometer slowly to 350 ± 10°F. Maintain at this temperature for 20 min. 1. Complete total distillation in 60 ± 5 min. from the first application of heat.

2. CRS-2P must meet one of either the ductility or elastic recovery requirements.

With all precertification samples of CMS-1P or CMS-2P, submit certified test reports showing the type and percent of rejuvenator 3. and/or latex added. Submit samples of these raw materials if requested by the Engineer.

4. Modifier type is TR. Determined in accordance with <u>Tex-553-C</u>.

Non-Tracking Tack Coat Emulsion ¹											
Property	Test NT-HRE		NT-	RRE	NT-SRE						
Floperty	Procedure	Min	Max	Min	Max	Min	Max				
Viscosity, Saybolt Furol, 77°F, sec.	T 72	15	-	15	-	10	100				
Storage stability, 1 Day, %	T 59	-	1	-	1	-	1				
Settlement, 5-day, %	T 59	-	5	-	5	-	5				
Sieve test, %	T 59	-	0.30	-	0.30	-	0.1				
Distillation test: ²	T 59										
Residue by distillation, % by wt.		50	-	58	- 1	50	- 1				
Oil distillate, by volume of emulsion		-	1.0	-	1.0	-	1.0				
Test on residue from distillation:											
Penetration, 77°F, 100 g, 5 sec.	T 49	_	20	15	45	40	90				
Solubility, %	T 44	97.5	-	97.5	- 1	97.5	- 1				
Dynamic shear, G*/sin(δ), 82°C, 10 rad/s, kPa	T 315	1.0	-	-	-	-	-				

Table 10A

These are emulsion-based TRAILs. Due to the hardness of the residue, these emulsions should be 1. heated to 120–140° F prior to thorough mixing as the emulsion is being prepared for testing.

2. Exception to T 59: Bring the temperature on the lower thermometer slowly to 350 ± 10°F. Maintain at this temperature for 20 min. Complete total distillation in 60 ± 5 min. from first application of heat.

Spray-Applied Underseal Membrane Polymer-Modified Emulsions							
Droporty	Test	E	3L				
Property	Procedure	Min	Max				
Viscosity @ 77°F, SSF	T 72	20	100				
Storage Stability ¹ , %	T 59	-	1				
Demulsibility ²	T 59	55	-				
Anionic emulsions — 35 mL of 0.02 N CaCl2, %							
Cationic emulsions — 35 mL 0.8% sodium dioctyl sulfosuccinate, %							
Sieve Test ³ , %	T 59	-	0.05				
Distillation Test ⁴	T 59						
Residue by distillation, % by wt.		63	-				
Oil portion of distillate, % by vol.		-	0.5				
Test on Residue from Distillation							
Elastic Recovery @ 50°F, 50 mm/min., %	Tex-539-C	60	-				
Penetration @ 77°F, 100 g, 5 sec, 0.1 mm	T 49	80	130				
1 After standing undisturbed for 24 br the surface must be smooth m	ust not ovhibit	white o	r				

Table 10B Spray-Applied Underseal Membrane Polymer-Modified Emulsions

 After standing undisturbed for 24 hr., the surface must be smooth, must not exhibit a white or milky colored substance, and must be a homogeneous color throughout.

2. Material must meet demulsibility test for emulsions.

3. May be required by the Engineer only when the emulsion cannot be easily applied in the field.

4. The temperature on the lower thermometer should be brought slowly to 350 ± 10°F and maintained at this temperature for 20 min. The total distillation should be completed in 60 ± 5 min. from the first application of heat.

Property	Test Procedure		rd Yield EM-SY)	High Yield (FDR EM-HY) ²		
	Procedure	Min	Max	Min	Max	
Viscosity Saybolt Furol @ 77°F, sec.	T 72	20	100	20	100	
Sieve test, %	T 59	-	0.1	-	0.1	
Cement mixing, %	T 59	-	2.0	-	2.0	
% Storage stability, 1 day, %	T 59	-	1	_	1	
Distillation test ¹ :	T 59					
Residue by distillation, % by wt.		60	-	63	-	
Oil portion of distillate, % by vol.		-	0.5	-	0.5	
Test on residue from distillation:						
Penetration @ 77°F, dmm	Т 49	40	95	120	-	

	Table 10C	
Full-Depth	Reclamation	Emulsion

 The temperature on the lower thermometer should be brought slowly to 350 ± 10°F and maintained at this temperature for 20 min. The total distillation should be completed in 60 ± 5 min. from the first application of heat.

2. Provide a manufacturer's certificate of analysis (COA) with the type and percent of rejuvenator added.

2.5.

Specialty Emulsions. Provide specialty emulsion that is either asphalt-based or resin-based and meets the requirements shown in Table 11 or Table 11A.

				Type-0	Grade			
Duramantu	Test		Medium	Setting	Setting		Slow-Setting	
Property	Procedure	A	AE-P		P&T	PCE ¹		
		Min	Max	Min	Max	Min	Max	
Viscosity, Saybolt Furol	T 72							
77°F, sec.		-	-	-	-	10	100	
122°F, sec.		15	150	-	-	-	-	
Sieve test, %	T 59	-	0.1	-	0.1	-	0.1	
Miscibility ²	T 59		-	Pa	iss	Pa	iss	
Demulsibility, 35 mL of 0.10 N CaCl ₂ , %	T 59	-	70	-	-	-	-	
Storage stability, 1 day, %	T 59	-	1	-	1	-	-	
Particle size, ⁵ % by volume < 2.5 μm	Tex-238-F ³	-	-	90	-	90	-	
Asphalt emulsion distillation to 500°F followed								
by Cutback asphalt distillation of residue to	T 59 and T 78							
680°F:								
Residue after both distillations, % by wt.		40	-	-	-	-	-	
Total oil distillate from both distillations, %		25	40					
by volume of emulsion		20	40	-	-	-	-	
Residue by distillation, % by wt.	T 59	-	-	60	-	-	-	
Residue by evaporation, ⁴ % by wt.	T 59	-	-	-	-	60	-	
Tests on residue after all distillation(s):								
Viscosity, 140°F, poise	T 202	-	-	800	-	-	-	
Kinematic viscosity, ⁵ 140°F, cSt	T 201	-	-	-	-	100	350	
Flash point C.O.C., °F	T 48	-	-	-	-	400	-	
Solubility, %	T 44	97.5	_	-	_	-	_	
Float test, 122°F, sec.	T 50	50	200	-	-	-	-	

Table 11 Specialty Emulsions

1. Supply with each shipment of PCE:

 a copy of a lab report from an approved analytical lab, signed by a lab official, indicating the PCE formulation does not meet any characteristics of a Resource Conservation Recovery Act (RCRA) hazardous waste;

- a certification from the producer that the formulation supplied does not differ from the one tested and that no listed RCRA hazardous wastes or Polychlorinated Biphenyls have been mixed with the product; and
 a Safety Data Sheet.
- 2. Exception to T 59: In dilution, use 350 mL of distilled or deionized water and a 1,000-mL beaker.
- Use <u>Tex-238-F</u>, beginning at "Particle Size Analysis by Laser Diffraction," with distilled or deionized water as a medium and no dispersant, or use another approved method.
- 4. Exception to T 59: Leave sample in the oven until foaming ceases, then cool and weigh.
- 5. PCE must meet either the kinematic viscosity requirement or the particle size requirement.

Property	Test Procedure	HF	RSS
		Min	Max
Viscosity, Krebs unit, 77°F, Krebs units	D 562	45	75
Softening point, °F	<u>Tex-505-C¹</u>	250	-
Uniformity	D 2939	Pa	ass ²
Resistance to heat	D 2939	Pa	ass ³
Resistance to water	D 2939	Pa	ass ⁴
Wet flow, mm	D 2939	-	0
Resistance to Kerosene (optional) ⁵	D 2939	Pa	ass ⁶
Ultraviolet exposure, UVA-340, 0.77 W/m ² , 50°C chamber, 8 hr. UV lamp,	G 154	Pa	ass ⁸
5 min. spray, 3 hr. 55 min. condensation, 1,000 hr. total exposure ⁷			
Abrasion loss, 1.6 mm thickness, liquid only, %	ISSA TB-100	-	1.0
Residue by evaporation, % by weight	D 2939	33	-
Tests on residue from evaporation:			
Penetration, 77°F, 100 g, 5 sec.	Т 49	15	30
Flash point, Cleveland open cup, °F	T 48	500	-
Tests on base asphalt before emulsification			
Solubility, %	T 44	98	-

Table 11A Hard Residue Surface Sealant

1. Cure the emulsion in the softening point ring in a 200 ± 5°F oven for 2 hr.

2. Product must be homogenous and show no separation or coagulation that cannot be overcome by moderate stirring.

3. No sagging or slippage of film beyond the initial reference line.

4. No blistering or re-emulsification.

5. Recommended for airport applications or where fuel resistance is desired.

6. No absorption of Kerosene into the clay tile past the sealer film. Note sealer surface condition and loss of adhesion.

7. Other exposure cycles with similar levels of irradiation and conditions may be used with Department approval.

8. No cracking, chipping, surface distortion, or loss of adhesion. No color fading or lightening.

2.6.

Diluted Emulsions. Provide emulsified asphalt that is homogeneous, does not separate after thorough mixing, and meets the requirements for the specified type and grade shown in Tables 12 and 12A, where the suffixes 50/50, 40/60, and 30/70 mean 50% emulsion diluted with 50% water; 40% emulsion diluted with 60% water, and 30% emulsion diluted with 70% water, respectively. For example, CSS-1H 40/60 means 40% CSS-1H diluted with 60% water and AE-P 30/70 means 30% AE-P diluted with 70% water.

Cationic Diluted Emulsified Asphalt											
		Type-Grade									
Property	Test		Di	ow-Setti	etting						
Fiopenty	Procedure	CSS-1	H 50/50	CSS-1	H 40/60	CSS-1I	H 30/70				
		Min	Max	Min	Max	Min	Max				
Viscosity, Saybolt Furol											
77°F, sec.	T 72	Report only		Report only		Repor	rt only				
Distillation test											
Residue by distillation, % by wt.	T 59	30	-	24	-	18	-				
Oil distillate, % by volume of emulsion		-	0.5	-	0.5	-	0.5				
Tests on residue from distillation:											
	- 10										
Penetration, 77°F, 100 g, 5 sec.	T 49	40	110	40	110	40	110				
Solubility, %	T 44	97.5	-	97.5	-	97.5	-				
Ductility, 77°F, 5 cm/min., cm	T 51	80	-	80	-	80	-				

Table 12 Cationic Diluted Emulaified Asphalt

				Type-	Grade			
Drenerty	Test	Diluted Slow-Setting						
Property	Procedure	AE-P	50/50	AE-P 40/60		AE-P	30/70	
		Min	Max	Min	Max	Min	Max	
Viscosity, Saybolt Furol	T 72							
122°F, sec.		Repo	rt only	Repo	rt only	Repo	rt only	
Asphalt emulsion distillation to 500°F followed by cutback asphalt distillation of residue to 680°F: Residue after both distillations, % by wt. Total oil distillate from both distillations, % by volume of emulsion	T 59 and T 78	20 12.5	_ 20	16 10.0	- 16	12 7.5	- 12	
Tests on residue after all distillations:								
Solubility, % Float test, 122°F, sec.	T 44 T 50	97.5 50	_ 200	97.5 50	_ 200	97.5 50	200	

Table 12A Diluted Specialty Emulsions

2.7.

2.8.

Recycling Agent. Recycling agent and emulsified asphalt recycling agent (ARA) must meet the requirements shown in Table 13. Additionally, recycling agent and residue from ARA, when added in the specified proportions to the recycled asphalt, must meet the properties shown on the plans.

Table 13

Recycling Agent	Recycling Agent and Emulsified Asphalt Recycling Agent										
	Test		ng Agent		RA-1	AR	A-1P				
Property	Procedure	Min	Max	Min	Max	Min	Max				
Viscosity, Saybolt Furol, 77°F, sec.	T 72	-	-	15	100	15	110				
Sieve test, %	T 59	-	-	-	0.1	-	0.1				
Miscibility ¹	T 59	-	-	No coa	gulation		-				
Residue by evaporation ² , % by wt.	T 59	-	-	60	-	-	-				
Distillation test ³ :	T 59										
Residue by distillation, % by wt.		-	-	-	-	60	65				
Oil distillate, % by volume of emulsion		-	-	-	-	-	2				
Penetration of distillation residue at 39.2°F,	T 49	-	-	-	-	110	190				
100 g, 5 sec.											
Tests on recycling agent or residue from											
evaporation:											
Flash point, C.O.C., °F	T 48	400	-	400	-	400	-				
Kinematic viscosity	T 201										
140°F, cSt		75	200	75	200	-	-				
275°F, cSt		-	10.0	-	10.0	-	-				

1. Exception to T 59: Use 0.02 N CaCl₂ solution in place of water.

2. Exception to T 59: Maintain sample at 300°F until foaming ceases, then cool and weigh.

Exception to T 59: Bring the temperature on the lower thermometer slowly to 350 ± 10°F. Maintain at this
temperature for 20 min. Complete total distillation in 60 ± 5 min. from first application of heat.

Crumb Rubber Modifier. CRM consists of automobile and truck tires processed by ambient temperature grinding.

CRM must be:

- free of contaminants, including fabric, metal, and mineral and other non-rubber substances;
- free-flowing; and
- non-foaming when added to hot asphalt binder.

Ensure rubber gradation meets the requirements of the grades shown in Table 14 when tested in accordance with <u>Tex-200-F</u>, Part I, using a 50-g sample.

Sieve Size	Grad	Grade A		Grade B		le C	Grade D	Grade E
(% Passing)	Min	Max	Min	Max	Min	Max		
#8	100	-	_	-	-	-	-	
#10	95	100	100	-	-	-	-	
#16	-	-	70	100	100	-	As shown on	As
#30	-	-	25	60	90	100	the plans	approved
#40	-	-	-	-	45	100		
#50	0	10	_	-	_	-		
#200	-	-	0	5	_	_		

Table 14 CRM Gradations

2.9.

Crack Sealer. Provide polymer-modified emulsified asphalt crack sealer meeting the requirements shown in Table 15. Provide rubber-asphalt crack sealer meeting the requirements shown in Table 16.

Table 15 Polymer-Modified Emulsified Asphalt Crack Sealer								
Property Test Procedure Min Ma								
Rotational viscosity, 77°F, cP	D2196, Method A	10,000	25,000					
Sieve test, %	T 59	-	0.1					
Storage stability, 1 day, %	T 59	-	1					
Evaporation	<u>Tex-543-C</u>							
Residue by evaporation, % by wt.		65	-					
Tests on residue from evaporation:								
Penetration, 77°F, 100 g, 5 sec.	T 49	35	75					
Softening point, °F	T 53	140	-					
Ductility, 39.2°F, 5 cm/min., cm	T 51	100	-					

Table 16

Asphale Rubber Class A Class B										
Property	Test Procedure	Min	Max	Min	Max					
CRM content, Grade A or Grade B, % by wt.	Tex-544-C	22	26	-	-					
CRM content, Grade B, % by wt.	Tex-544-C	_	-	13	17					
Virgin rubber content ¹ , % by wt.		_	-	2	-					
Flash point ² , C.O.C., °F	T 48	400	-	400	-					
Penetration ³ , 77°F, 150 g, 5 sec.	T 49	30	50	30	50					
Penetration ³ , 32°F, 200 g, 60 sec.	T 49	12	-	12	-					
Softening point, °F	T 53	-	-	170	-					
Bond test, non-immersed, 0.5 in specimen,										
50% extension, 3 cycles, 20°F ⁴	D5329		-	Pa	ISS					
1. Provide certification that the Min % virg	in rubber was adde	ed.								

Asphalt-Rubber Crack Sealer

2. Agitate the sealing compound using a 3/8–1/2-in. (9.5–12.7-mm) wide, square-end metal spatula to bring the material on the bottom of the cup to the surface (i.e., turn the material over)

- spatula to bring the material on the bottom of the cup to the surface (i.e., turn the material over) before passing the test flame over the cup. Start at one side of the thermometer, move around to the other, and then return to the starting point using 8–10 rapid circular strokes. Accomplish agitation in 3–4 sec. Pass the test flame over the cup immediately after stirring is completed.
- 3. Exception to T 49: Substitute the cone specified in D217 for the penetration needle.
- 4. Allow no crack in the crack-sealing materials or break in the bond between the sealer and the mortar blocks more than 1/4 in. deep for any specimen after completion of the test.
- 2.10. **Asphalt-Rubber Binders**. Provide A-R binders that are mixtures of asphalt binder and CRM that have been reacted at elevated temperatures. Provide A-R binders meeting D6114 and containing at least 15% CRM by weight. Provide Type I or Type II, containing CRM Grade C, for use in hot-mix aggregate mixtures. Provide Type II or Type III, containing CRM Grade B, for use in surface treatment binder. Ensure binder properties meet the requirements shown in Table 17.

	A-R Binde	rs					
	Test						
Property	Procedure	Ту	Type I		e II	Type III	
	Procedure	Min	Max	Min	Max	Min	Max
Apparent viscosity, 347°F, cP	D2196, Method A	1,500	5,000	1,500	5,000	1,500	5,000
Penetration, 77°F, 100 g, 5 sec.	T 49	25	75	25	75	50	100
Penetration, 39.2°F, 200 g, 60 sec.	T 49	10	-	15	-	25	-
Softening point, °F	T 53	135	-	130	-	125	-
Resilience, 77°F, %	D5329	25	-	20	-	10	-
Flash point, C.O.C., °F	T 48	450	-	450	-	450	-
Tests on residue from RTFOT:	T 240						
Retained penetration ratio, 39.2°F, 200 g, 60 sec., % of original	T 49	75	-	75	_	75	-

Table 17

Performance-Graded Binders. Provide PG binders that are smooth and homogeneous, show no 2.11. separation when tested in accordance with Tex-540-C, and meet the requirements shown in Table 18.

Separation testing is not required if:

200 g, 60 sec., % of original

a modifier is introduced separately at the mix plant by injection in either the asphalt line or mixer,

- the binder is blended onsite in continuously agitated tanks, or
- binder acceptance is based on field samples taken from an in-line sampling port at the hot-mix plant after the addition of modifiers.

	-		Perfo	rman	ce-G	radec	Bin											
								Perfe		nce G	Grade							
Property and Test Method		PG 5	-		PG	•••				i 70	1			76	1		PG 82	-
	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28
Average 7-day Max pavement design		58			6	4			7	0			7	' 6			82	
temperature, °C ¹				10		-				-		10	-	-				
Min pavement design temperature, °C1	-22	-28	-34		-22			-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28
Fleeh asist T 40 Min 80	1			Ori	ginal	Binde	er		0	20								
Flash point, T 48, Min, °C									Ζ.	30								
Viscosity, T 316 ^{2, 3} :									1;	35								
Max, 3.0 Pa·s, test temperature, °C				r –												r –		
Dynamic shear, T 315 ⁴ :																		
G*/sin(δ), Min, 1.00 kPa, Max, 2.00 kPa⁵,		58			6	4			7	0			7	'6		82		
Test temperature @ 10 rad/sec., °C																		
Elastic recovery, D6084, 50°F, % Min ⁶	-	-	30	-	-	30	50	-	30	50	60	30	50	60	70	50	60	70
Rolling Thin Film Oven (RTFO) (T 240)																		
Mass change, T 240, Max, %									1	.0								
Dynamic shear, T 315																		
G*/sin(∂), Min, 2.20 kPa, Max, 5.00 kPa⁵,		58 64 70			76			82										
Test temperature @ 10 rad/sec., °C																		
MSCR, T 350, recovery, 0.1 kPa, high PG	_	_	20	_	-	20	30	_	20	30	40	20	30	40	50	30	40	50
temperature, % Min ⁶								Lalve a	(0.00									
DAV/ aging tomp and up 80	Pre	essur	e Agi	ng ve	essei	(PAV) Res	slaue										
PAV aging temperature, °C		<u> </u>		r	r					00				r		r		
Dynamic shear, T 315																		
G*.sin (δ), Max, 5,000 kPa	25	22	19	28	25	22	19	28	25	22	19	28	25	22	19	28	25	22
(Max, 6,000 kPa for $\delta \ge 42^\circ$)																		
Test temperature @ 10 rad/sec., °C																		
Creep stiffness, T 313 ^{7,8}																		
S, Max, 300 MPa,	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18
m-value, Min, 0.300 Test temperature @ 60 sec., °C																		
Direct tension, T 314 ⁸																		
Failure strain, Min, 1.0%	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18
Test temperature @ 1.0 mm/min., °C	-1Z	-10	-24	-0	-12	-10	-24	-0	-12	-10	-24	-0	-12	-10	-24	-0	-12	-10
		I			I					l				l		l		

Table 18 Performance-Graded Binders

300

1. Pavement temperatures are estimated from air temperatures using an algorithm contained in a Department-supplied computer program, may be provided by the Department, or may be obtained by following procedures outlined in AASHTO M 323 and R 25.

2. This requirement may be waived at the Department's discretion if the supplier warrants that the asphalt binder can be adequately pumped, mixed, and compacted at temperatures that meet all applicable safety, environmental, and constructability requirements. At test temperatures where the binder is a Newtonian fluid, any suitable standard means of viscosity measurement may be used, including capillary (T 201 or T 202) or rotational viscometry (T 316).

3. Viscosity at 135°C is an indicator of mixing and compaction temperatures that can be expected in the lab and field. High values may indicate high mixing and compaction temperatures. Additionally, significant variation can occur from batch to batch. Contractors should be aware that variation could significantly impact their mixing and compaction operations. Contractors are therefore responsible for addressing any constructability issues that may arise.

4. For quality control of unmodified asphalt binder production, measurement of the viscosity of the original asphalt binder may be substituted for dynamic shear measurements of G*/sin (δ) at test temperatures where the asphalt is a Newtonian fluid. Any suitable standard means of viscosity measurement may be used, including capillary (T 201 or T 202) or rotational (T 316) viscometry.

5. Max values for unaged and RTFO-aged dynamic shear apply only to materials used as substitute binders, as described in Item 341, "Dense-Graded Hot-Mix Asphalt," and Item 344, "Superpave Mixtures."

6. Elastic recovery (D6084) is not required unless MSCR (T 350) is less than the Min % recovery. Elastic recovery will be used for the acceptance criteria in this instance.

7. Silicone beam molds, as described in AASHTO TP 1-93, are acceptable for use.

 If creep stiffness is below 300 MPa, direct tension test is not required. If creep stiffness is between 300 and 600 MPa, the direct tension failure strain requirement can be used instead of the creep stiffness requirement. The m-value requirement must be satisfied in both cases.

3. EQUIPMENT

Provide all equipment necessary to transport, store, sample, heat, apply, and incorporate asphalts, oils, and emulsions.

4. CONSTRUCTION

4.1.

Typical Material Use. Use materials shown in Table 19, unless otherwise determined by the Engineer.

Table 19							
Typical Material Use							
Material Application	Typically Used Materials						
Hot-mixed, hot-laid asphalt mixtures	PG binders, A-R binder Types I and II						
Surface treatment	PG 58-22, AC-15P, AC-20XP, AC-10-2TR, AC-20-5TR, HFRS-2, MS-2, CRS-2, CRS-2TR, CMS-2P, HFRS-2P, CRS-2P, CHFRS-2P, A-R binder Types II and III						
Surface treatment (cool weather)	AC12-5TR, RC-250, MC-800, MC-3000, CMS-2P						
Precoating	PG 58-22, PG 64-22, SS-1, SS-1H, CSS-1, CSS-1H						
Tack coat	PG binders, SS-1H, CSS-1H, EAP&T, TRAIL, EBL						
Fog seal	SS-1, SS-1H, CSS-1, CSS-1H, CSS-1H 50/50, CSS-1H 40/60, CSS-1H 30/70, CMS-1P						
Hot-mixed, cold-laid asphalt mixtures	AC-0.6, AC-1.5, PG 58-22, CMS-2						
Patching mix	MC-800, SCM I						
Recycling	AC-0.6, AC-1.5, recycling agent, ARA-1, ARA-1P						
Crack sealing	Polymer-modified AE crack sealant, asphalt-rubber crack sealers (Class A, Class B)						
Microsurfacing	CSS-1P						
Prime	MC-30, AE-P, AE-P 50/50, AE-P 40/60, AE-P 30/70, EAP&T, PCE						
Curing membrane	SS-1, SS-1H, CSS-1, CSS-1H, PCE						
Erosion control	SS-1, SS-1H, CSS-1, CSS-1H, PCE						
FDR-foaming	PG 64-22, FDR EM-SY, FDR EM-HY						

4.2. **Storage and Application Temperatures**. Use storage and application temperatures in accordance with Table 20. Store and apply materials at the lowest temperature yielding satisfactory results. Follow the manufacturer's instructions for any agitation requirements in storage. Manufacturer's instructions regarding recommended application and storage temperatures supersede those shown in Table 19.

Storage and Application Temperatures							
	Applica	Storage					
Type-Grade	Recommended Range	Max Allowable	Max				
	(°F)	(°F)	(°F)				
AC-0.6, AC-1.5	200-300	350	350				
AC-15P, AC-20-5TR, AC12-5TR, and AC10-2TR	300–375	375	360				
RC-250	125–180	200	200				
MC-30, AE-P	70–150	175	175				
MC-800, SCM I	175–260	275	275				
MC-3000	225–275	290	290				
HFRS-2, MS-2, CRS-2, HFRS-2P, CRS-2P, CMS-2, CRS-2TR	120–160	180	180				
SS-1, SS-1H, CSS-1, CSS-1H, PCE, EAP&T, CSS-1P, recycling agent, emulsified recycling agent, polymer-modified AE crack sealant	50–130	140	140				
PG binders	275–350	350	350				
Asphalt-rubber crack sealers (Class A, Class B)	350-375	400	-				
A-R binder Types I, II, and III	325–425	425	425				

Table 20 Storage and Application Temperatures

5. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly, but will be subsidiary to or are included in payment for other pertinent Items.

Item 301 Asphalt Antistripping Agents

1. DESCRIPTION

Furnish and incorporate all required asphalt antistripping agents in asphalt concrete paving mixtures and asphalt-stabilized base mixtures to meet moisture resistance testing requirements.

2. MATERIALS

- 2.1. Lime. Provide hydrated lime or commercial lime slurry in accordance with <u>DMS-6350</u>, "Lime and Lime Slurry."
- 2.2. Liquid Antistripping Agent. Provide a liquid antistripping agent that is uniform and shows no evidence of crystallization, settling, or separation.

Ensure all liquid antistripping agents arrive in:

- properly labeled and unopened containers, as shipped from the manufacturer; or
- sealed tank trucks with an invoice to show contents and quantities.

Provide product information to the Engineer, including:

- Safety Data Sheet,
- specific gravity of the agent at the manufacturer's recommended addition temperature,
- manufacturer's recommended dosage range, and
- handling and storage instructions.

3. EQUIPMENT

Provide all equipment to store, handle, dispense, meter, and mix asphalt antistripping agents.

4. CONSTRUCTION

4.1. **Laboratory Design Evaluation and Production Mixture Verification**. Provide a laboratory mixture design and production mixture that meet moisture resistance requirements. Evaluate proposed asphalt pavement or base mixtures during design and production in conformance with the moisture resistance requirements in the asphalt mixture specification.

Governing specifications require the Contractor or Engineer to design the mixture, and the party performing the design is responsible for the moisture susceptibility evaluation. If the Contractor designs the mixture, the Engineer verifies compliance.

Determine the dosage needed to achieve the moisture resistance requirements during design if an antistripping agent is required. Use this addition rate in the production mixture.

Add between 0.5% and 2.0% of hydrated lime or commercial lime slurry solids by weight of the individual aggregate treated when using lime.

Add liquid antistripping agent, when used, to the binder, in conformance with the manufacturer's instructions. Do not exceed the manufacturer's maximum recommended dosage rate.

301

Stop production if the production mixture does not meet moisture resistance requirements and correct the problem.

- 4.2. Addition of Antistripping Agents at the Mix Plant. Connect the measuring device for the addition of the asphalt antistripping agent into the automatic plant controls to automatically adjust the supply to plant production and provide a consistent percentage in the mixture. Set automatic plant controls so that an interruption of asphalt antistripping agent's flow causes plant shutdown.
- 4.2.1. **Lime**. Incorporate lime in a manner that thoroughly and uniformly distributes lime onto the aggregate surface or into the mixture. Use metering equipment, as approved, to ensure the required quantity of lime is used.
- 4.2.1.1. **Hydrated Lime**. Add hydrated lime to the aggregate by one of the following methods, unless otherwise shown on the plans:
 - mix in an approved pug mill mixer with damp aggregate containing water at least 2% above saturated surface dry conditions; or
 - add into the drum-mix plant immediately before asphalt binder addition or in the pug mill of the weigh-batch plant before asphalt binder addition. Dry mix aggregates and lime before adding asphalt binder when a weigh batch plant is used.
- 4.2.1.2. **Commercial Lime Slurry**. Add commercial lime slurry to the aggregate by one of the following methods unless otherwise shown on the plans:
 - mix in a suitable pug mill mixer with the aggregate; or
 - mix with aggregate between the plant cold feeds and the dryer or mixing drum during mixture production.
- 4.2.2. Liquid Antistripping Agent. Incorporate liquid antistripping agent into the binder as follows:
 - handle in conformance with the manufacturer's recommendations;
 - add at the manufacturer's recommended addition temperature;
 - add into the asphalt line by means of an in-line metering device, in accordance with Item 520, "Weighing and Measuring Equipment," and a blending device to disperse the agent; and
 - place the metering and blending devices in an approved location.

5. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly but will be subsidiary to or included in payment quantity for other pertinent Items.

Item 302 Aggregates for Surface Treatments

1. DESCRIPTION

Furnish aggregate for surface treatments in conformance with the type, grade, and Surface Aggregate Classification (SAC) shown on the plans.

2. MATERIALS

Furnish uncontaminated materials of uniform quality throughout that meet the requirements of the plans and specifications. Notify the Engineer of all proposed material sources and of changes to material sources. The Engineer will designate the sampling location.

2.1. **Aggregate**. Stockpile aggregates for each source and type separately. Do not add materials to approved stockpiles without approval.

Furnish aggregate of the type shown on the plans and in Table 1. Use <u>Tex-100-E</u> material definitions.

Table 1 Aggregate Types						
Туре	Material					
A	Gravel, crushed slag, crushed stone, or limestone rock asphalt (LRA)					
В	Crushed gravel, crushed slag, crushed stone, or LRA					
С	Gravel, crushed slag, or crushed stone					
D	Crushed gravel, crushed slag, or crushed stone					
E	Aggregate as shown on the plans					
L	Lightweight aggregate					
PA	Precoated gravel, crushed slag, crushed stone, or LRA					
PB	Precoated crushed gravel, crushed slag, crushed stone, or LRA					
PC	Precoated gravel, crushed slag, or crushed stone					
PD	Precoated crushed gravel, crushed slag, or crushed stone					
PE	Precoated aggregate as shown on the plans					
PL	Precoated lightweight aggregate					

Ensure the aggregate gradation meets the requirements shown in Table 2 for the specified grade, unless otherwise approved.

Furnish aggregate that meets the requirements shown in Table 3, unless otherwise shown on the plans. Furnish LRA in accordance with <u>DMS-9210</u>, "Limestone Rock Asphalt," when used. Provide aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC). Use material not listed or not meeting the requirements of the BRSQC only when tested by the Engineer and approved before use. Allow 30 calendar days for testing of material from such sources.

Provide aggregates for final surfaces that meet the SAC shown on the plans. Do not blend to meet the SAC. The SAC requirement will apply only to the aggregate used on the travel lanes unless otherwise shown on the plans. The BRSQC lists the SAC for sources in the *Aggregate Quality Monitoring Program*.

2.2.

	302

Sieve	Grade								
	1	2	3S ²	3		4S ²	4	5S ²	5
				Non-Lightweight	Lightweight				
1"	-	-	-	-	-	-	-	-	-
7/8"	0–2	0	-	-	-	-	-	-	-
3/4"	20–35	0–2	0	0	0	-	-	-	-
5/8"	85–100	20–40	0–5	0–5	0–2	0	0	-	-
1/2"	-	80–100	55–85	20–45	10–25	0–5	0–5	0	0
3/8"	95–100	95–100	95–100	80–100	60–80	60–85	20–45	0–5	0–5
1/4"	-	-	-	95–100	95–100	-	-	65–85	-
#4	-	-	-	-	-	95–100	95–100	95–100	50–80
#8	99–100	99–100	99–100	98–100	98–100	98–100	98–100	98–100	98–100

Table 2 Aggregate Gradation Requirements (Cumulative % Retained¹)

1. Round test results to the nearest whole number.

2. Single-size gradation.

Aggregate Quality Requirements						
Property	Test Method	Requiremen	nt ¹			
		Minimum	Maximum			
SAC	<u>Tex-499-A</u>	As shown on the	plans			
Deleterious Material ² , %	<u>Tex-217-F</u> , Part I	-	2.0			
Decantation, %	<u>Tex-406-A</u>	-	1.5			
Flakiness Index, %	<u>Tex-224-F</u>	-	17			
Gradation	adation <u>Tex-200-F</u> , Part I Table 2					
Los Angeles Abrasion, %	<u>Tex-410-A</u>	-	35			
Magnesium Sulfate	<u>Tex-411-A</u>	-	25			
Soundness,						
5 Cycle, %						
Coarse Aggregate	<u>Tex-460-A</u> , Part I	85	-			
Angularity ³ ,						
2 Crushed Faces, %						
Addit	ional Requirements for Ligh	tweight Aggregate				
Dry Loose Unit Wt., lb./cu. ft.	<u>Tex-404-A</u>	35	65			
Pressure Slaking, %	<u>Tex-431-A</u>	-	6.0			
Freeze-Thaw Loss, %	<u>Tex-432- A</u>	-	10.0			
Water Absorption, 24 hr., %	<u>Tex-433-A</u>	-	12.0			

Table 3
Aggregate Quality Requirement

1. Material requirements listed in the table, unless otherwise shown on the plans.

2. Not required for lightweight aggregate.

3. Required only for crushed gravel.

Precoating. Precoat aggregate uniformly and adequately with asphalt material to the satisfaction of the Engineer when shown on the plans. Specific aggregates may be prohibited from being precoated when shown on the plans. Meet requirements shown in Table 2 and Table 3 before precoating. Furnish precoated aggregate that spreads uniformly using approved mechanical spreading equipment. Precoat LRA in accordance with <u>DMS-9210</u>, when used.

The Engineer retains the right to select a target value for the desired percent by weight of residual bitumen coating on the aggregate. Furnish precoated aggregate that is within $\pm 0.3\%$ of the target value when tested in accordance with <u>Tex-236-F</u>. The Engineer may require trial batches to assist in selecting the target value. LRA is exempt from these requirements.

The Engineer retains the right to remove precoat material from aggregate samples in accordance with <u>Tex-210-F</u>, or as recommended by the Materials and Tests Division, and test the aggregate to verify compliance with requirements shown in Table 2 and Table 3. Gradation testing may be performed with precoat intact.

2

2024 Specifications

- 2.2.1. Asphalt Material. Precoat the aggregates with asphalt material that meets the requirements of Item 300, "Asphalts, Oils, and Emulsions." Use any asphalt material that meets the requirements of Item 300 unless a specific precoat material is shown on the plans.
- 2.2.1.1. Asphalt Material Sampling and Testing. Sample each binder grade and source used in accordance with <u>Tex-500-C</u> and witnessed by the Engineer. The Contractor will notify the Engineer when the sampling will occur. The Engineer will submit the sample to the Materials and Tests Division to verify compliance with Item 300.
- 2.2.2. Additives. Use the type and rate of additive specified when shown on the plans. Add in accordance with Item 301, "Asphalt Antistripping Agents." Use <u>Tex-530-C</u> for verification during production testing unless otherwise directed.
- 2.3. **Sampling**. Personnel who conduct sampling and witnessing of sampling must be certified by the Department-approved certification program. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning construction and when personnel changes are made. At any time during the project, the Engineer may perform production tests as deemed necessary in accordance with Item 5, "Control of the Work."

The Engineer, unless otherwise directed, will sample aggregate from stockpiles located at the production site, intermediate distribution site, or project location in accordance with <u>Tex-221-F</u>. The Engineer, unless otherwise directed, will split each sample into two equal portions in accordance with <u>Tex-200-F</u>, and label these portions for the Engineer and Contractor as deemed appropriate. Witness the sampling and splitting and take immediate possession of the samples labeled for the Contractor. When the Engineer does not sample, the Engineer must witness the sampling of aggregates designated for the Engineer and will take immediate possession of them.

2.4. **Reporting and Responsibilities**. The Engineer will provide test results to the Contractor and supplier within 10 working days from the date the stockpile was sampled for sources listed in the Department's BRSQC, unless otherwise directed. The Engineer will provide test results for the Los Angeles Abrasion (Tex-410-A) and Magnesium Sulfate Soundness (Tex-411-A) tests within 30 calendar days for sources not listed in the BRSQC. The Engineer will report to the other party within 24 hr. when any test result does not meet the requirements shown in Table 2 or Table 3.

3. EQUIPMENT

Manufacture precoated aggregate at a mixing plant that produces uniformly coated aggregate.

4. CONSTRUCTION

Deliver aggregate to the locations shown on the plans. Prevent segregation, mixing of the various materials or sizes, and contamination by foreign materials when aggregates are stockpiled. The Engineer will reject contaminated stockpiles.

Provide adequate initial cooling of precoated aggregate to prevent asphalt or aggregate damage due to excessive heat buildup in stockpiles. Limit stockpile height to 3 ft. immediately after production when asphalt cement is the precoating material. Consolidate stockpiles after adequate cooling, as approved. The Engineer will reject stockpiles showing evidence of damage due to excessive heat buildup.

5. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, tools, and incidentals will not be measured or paid for directly but will be subsidiary to or included under "Payment" in other pertinent Items.

Item 305 Salvaging, Hauling, and Stockpiling Reclaimable Asphalt Pavement

1. DESCRIPTION

Salvage, haul, and stockpile existing asphalt material.

2. CONSTRUCTION

Remove dirt, raised pavement markings, and other debris, as directed. Remove the reclaimable asphalt material as shown on the plans or as directed. Ensure that 95% of the reclaimed material passes a 2-in. sieve unless otherwise shown on the plans. Do not contaminate asphalt material during its removal, transportation, or storage. Repair remaining pavement that is damaged by the removal operations.

Provide a clean, smooth, and well-drained stockpile area free of trash, weeds, and grass. Separate different types or quality of asphalt material into different stockpiles as directed. Stockpile material as shown on the plans or as directed.

The Contractor retains ownership of the reclaimed asphalt material unless otherwise shown on the plans. The plans or the Engineer may allow or require the use of salvaged material for other items in the Contract. Stockpile the salvaged material at the location shown on the plans or as directed if not used in other construction items of this Contract.

3. MEASUREMENT

This Item will be measured by the cubic yard of material calculated by the average end area method, or as shown on the plans, in the stockpile, or the square yard in its original position.

4. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Salvaging, Hauling, and Stockpiling Reclaimable Asphalt Pavement" for cubic yard measurement, and for "Salvaging, Hauling, and Stockpiling Reclaimable Asphalt Pavement (Depth Specified)" for square yard measurement. This price is full compensation for cleaning and removing existing pavement; stockpile area preparation; loading, crushing or breaking, hauling, and stockpiling material; and material, equipment, labor, tools, supplies, and incidentals.

Item 310 **Prime Coat**

310

1. DESCRIPTION

Prepare and treat existing or newly constructed surface with an asphalt binder or other specialty prime coat binder material. Apply blotter material as required.

2. MATERIALS

- 2.1. Binder. Use material of the type and grade shown on the plans in accordance with Item 300. "Asphalts, Oils, and Emulsions."
- 2.2. Blotter. Use either base course sweepings obtained from cleaning the base or native sand as blotter materials unless otherwise shown on the plans or approved.

3. EQUIPMENT

Provide applicable equipment in accordance with Article 316.3., "Equipment."

4. CONSTRUCTION

4.1. General. Apply the mixture when the air temperature is at or above 60°F, or above 50°F and rising. Measure the air temperature in the shade away from artificial heat. The Engineer will determine when weather conditions are suitable for application.

> Do not permit traffic, hauling, or placement of subsequent courses over freshly constructed prime coats. Maintain the primed surface until placement of subsequent courses or acceptance of the work.

4.2. Surface Preparation. Prepare the surface by sweeping or other approved methods. Lightly sprinkle the surface with water before applying bituminous material, when directed, to control dust and ensure absorption.

4.3. Application.

4.3.1. Binder. The Engineer will select the application temperature within the limits recommended in Item 300, or by the material manufacturer. Apply material within 15°F of the selected temperature, but do not exceed the maximum allowable temperature.

> Distribute the material smoothly and evenly at the rate selected by the Engineer. Roll the freshly applied prime coat using a pneumatic-tire roller to ensure penetration when directed.

4.3.2. Blotter. Spread blotter material before allowing traffic to use a primed surface. Apply blotter material to primed surface at the specified rate when "Prime Coat and Blotter" is shown on the plans as a bid item or as directed. Apply blotter to spot locations when "Prime Coat" is shown on the plans as a bid item or as directed to accommodate traffic movement through the work area. Remove blotter material before placing the surface. Dispose of blotter material in conformance with applicable state and federal requirements.

5. MEASUREMENT

This Item will be measured by the gallon of binder placed and accepted.

6.

PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Prime Coat" or "Prime Coat and Blotter" of the type and grade of binder specified. This price is full compensation for cleaning and sprinkling the area to be primed; materials, including blotter material; and rolling, equipment, labor, tools, and incidentals.

Item 314 Emulsified Asphalt Treatment

314

1. DESCRIPTION

Apply a mixture of water and emulsion as a base or subgrade treatment; for erosion control, including dust prevention; or as a prime coat.

2. MATERIALS

Furnish materials of the type and grade shown on the plans and in accordance with the following.

- 2.1. Emulsion. Furnish emulsified asphalt in accordance with Item 300, "Asphalts, Oils, and Emulsions."
- 2.2. **Emulsion and Water Mixture**. Dilute the emulsion by adding water to create a mixture containing a proportion of emulsion, expressed as a percentage of total volume, in conformance with the percentage shown on the plans or as directed.

3. EQUIPMENT

Provide a self-propelled sprinkler in accordance with Article 204.3., "Equipment." Provide current calibration documentation for the tank used for distribution.

4. CONSTRUCTION

Agitate the emulsion and water mixture to produce a uniform blend. Evenly distribute at the rate selected by the Engineer to locations shown on the plans or as directed.

4.1. **Base or Subgrade Treatment**. Treat the base or subgrade to the depth and width shown on the plans or as directed.

Regulate the percentage of emulsion in the mixture and distribute successive applications to achieve the specified rate. Maintain the proper moisture content of the treated material. Mix the treated material, then shape and compact as required by the specification for the course. Finish the course to the line, grade, and typical section shown on the plans. Maintain the surface using light applications of the mixture while curing the course, as directed.

- 4.2. Erosion Control. Apply the mixture as shown on the plans or as directed.
- 4.3. **Prime Coat**. Regulate the percentage of emulsion in the mixture and distribute successive applications to achieve the specified rate.

5. MEASUREMENT

The treatment will be measured by the gallon of emulsion at the specified dilution ratio. Material will be measured at the applied temperature by strapping the tank before and after road application. The distributor-calibrated strap stick will be used for measuring the emulsion and water mixture level in the distributor asphalt tank. The certified tank chart will be used to determine the beginning gallons and the final gallons in the distributor tank. The quantity to be measured for payment will be the difference between the beginning gallons and the final gallons.

6.

PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Emulsified Asphalt (Base or Subgrade Treatment)," "Emulsified Asphalt (Erosion Control)," or "Emulsified Asphalt (Prime Coat)," of the type and grade specified. This price is full compensation for materials, including emulsion and water, and for equipment, labor, tools, and incidentals.

Item 315 Fog Seal

315

1. DESCRIPTION

Apply a mixture of water and emulsion as an aggregate loss preventative or surface seal.

2. MATERIALS

Furnish materials of the type and grade shown on the plans in accordance with the following.

- 2.1. Emulsion. Furnish emulsified asphalt in accordance with Item 300, "Asphalts, Oils, and Emulsions."
- 2.2. **Emulsion and Water Mixture**. Dilute the emulsion by adding water to create a mixture containing a proportion of emulsion, expressed as a percentage of total volume, that meets the percentage shown on the plans or as directed.

3. EQUIPMENT

Provide applicable equipment in accordance with Article 316.3., "Equipment." Furnish the necessary facilities and equipment for determining the temperature of the mixture, regulating the application rate, and securing uniformity at the junction of two distributor loads.

4. CONSTRUCTION

Apply the mixture when the air temperature is at or above 60°F, or above 50°F and rising. Measure the air temperature in the shade away from artificial heat. The Engineer will determine when weather conditions are suitable for application.

The Engineer will select the application temperature within the limits in accordance with Item 300. Apply the material within 15°F of the selected temperature but less than the maximum allowable temperature.

Distribute material at the rate shown on the plans or as directed.

Open the treated surface to traffic when directed. Furnish and uniformly distribute clean, fine sand on the surface to blot the excess when an excessive quantity of asphalt is applied. Maintain ingress and egress as directed by applying sand to freshly sealed areas.

MEASUREMENT

5.

The treatment will be measured by the gallon of emulsion at the specified dilution ratio. Material will be measured at the applied temperature by strapping the tank before and after road application. The distributor-calibrated strap stick will be used for measuring the emulsion and water mixture level in the distributor asphalt tank. The certified tank chart will be used to determine the beginning gallons and the final gallons in the distributor tank. The quantity to be measured for payment will be the difference between the beginning gallons and the final gallons.

6.

PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Fog Seal" of the type and grade specified. This price is full compensation for materials, including emulsion and water, and for equipment, labor, tools, and incidentals. Blotter sand will not be measured or paid for directly but will be subsidiary to this Item.

Item 316 Seal Coat

316

1. DESCRIPTION

Construct a surface treatment consisting of one or more applications of a single layer of asphalt material covered with a single layer of aggregate.

2. MATERIALS

Furnish materials of the type and grade shown on the plans in conformance with the following.

2.1. Asphalt. Furnish asphalt materials meeting the requirements of Item 300, "Asphalts, Oils, and Emulsions."

Furnish Type II or Type III asphalt-rubber (A-R) binder in accordance with Section 300.2.10., "Asphalt-Rubber Binders," as shown on the plans. Furnish a blend design for approval. Include in the design, at a minimum, the following:

- manufacturer and grade of asphalt cement;
- manufacturer and grade of crumb rubber;
- manufacturer, type, and percentage of extender oil, if used;
- test report pertinent to crumb rubber gradation in accordance with <u>Tex-200-F</u>, Part I;
- design percentage of crumb rubber versus asphalt content;
- blending temperature; and
- test results pertinent to the properties at reaction times of 60, 90, 240, 360, and 1,440 min. in accordance with Section 300.2.10., "Asphalt-Rubber Binders."

Furnish a new A-R blend design if the grade or source for any of the components changes.

If a tack coat is specified when using A-R, unless otherwise shown on the plans or approved, furnish CSS-1H, SS-1H, or a performance-grade (PG) binder with a minimum high-temperature grade of PG 58 for tack coat binder. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use. If required, verify that emulsified asphalt proposed for use meets the minimum residual asphalt percentage specified in Item 300.

- 2.2. **Aggregate**. Furnish aggregate meeting Item 302, "Aggregates for Surface Treatments," of the type and grade shown on the plans. Unless otherwise shown on the plans, furnish aggregate with a minimum Surface Aggregate Classification B.
- 2.3. Materials Selections. Furnish asphalt and aggregate as shown on the plans.

3. EQUIPMENT

- 3.1. **Distributor**. Furnish a distributor that will apply the asphalt material uniformly at the specified rate or as directed.
- 3.1.1. **Transverse Variable Rate**. When a transverse variable rate is shown on the plans, ensure that the nozzles outside the wheel paths will output a predetermined percentage more asphalt material by volume than the nozzles over the wheel paths. Use a dual spray bar distributor as desired to provide for a transverse variable rate.

3.1.2. **Agitation for Asphalt-Rubber**. If using A-R, furnish a distributor capable of keeping the rubber in uniform suspension and adequately mixing the asphalt, rubber, and any additional additives.

3.1.3. Calibration.

3.1.3.1. **Transverse Distribution**. Furnish a distributor test report, less than 1 yr. old, when tested in accordance with <u>Tex-922-K</u>, Part III. The Department reserves the right to witness the calibration testing. Notify the Engineer 3 days before calibration testing.

Include the following documentation in the test report:

- the serial number of the distributor,
- a method that identifies the actual nozzle set used in the test, and
- the fan width of the nozzle set at a 12-in. bar height.

When a transverse variable rate is required, and a single spray bar is to be used, perform the test using the type and grade of asphalt material to be used on the project. The Engineer may verify the transverse rate and distribution at any time. If verification does not meet the requirements, correct deficiencies and furnish a new test report.

3.1.3.2. **Tank Volume**. Furnish a volumetric calibration and strap stick for the distributor tank in accordance with <u>Tex-922-K</u>, Part I.

Provide documentation of distributor calibration performed no more than 5 yr. before the date first used on the project. The Engineer may verify calibration accuracy in accordance with <u>Tex-922-K</u>, Part II.

- 3.1.4. **Computerized Distributor**. When paying for asphalt material by weight, the Engineer may allow use of the computerized distributor display to verify application rates. Verify application rate accuracy at a frequency acceptable to the Engineer.
- 3.2. **Aggregate Spreader**. Use a continuous-feed, self-propelled spreader to apply aggregate uniformly at the specified rate or as directed. If racked-in aggregate is shown on the plans, furnish a second aggregate spreader for the racked-in aggregate to apply aggregate uniformly at the specified rate.
- 3.3. **Rollers**. Unless otherwise shown on the plans, furnish light pneumatic-tire rollers in accordance with Item 210, "Rolling."
- 3.4. **Broom**. Furnish rotary, self-propelled brooms.
- 3.5. Asphalt Storage and Handling Equipment. When the plan or the Engineer allows storage tanks, furnish a thermometer in each tank to indicate the asphalt temperature continuously. Keep equipment clean and free of leaks. Keep asphalt material free of contamination.
- 3.6. **Aggregate Haul Trucks**. Unless otherwise approved, use trucks of uniform capacity to deliver the aggregate. Provide documentation showing measurements and calculation in cubic yards. Clearly mark the calibrated level. Truck size may be limited when shown on the plans.
- 3.7. **Digital Distance-Measuring Instrument**. Furnish a vehicle with a calibrated digital distance-measuring instrument accurate to ±6 ft. per mile.

4. CONSTRUCTION

4.1. **General**. Comply with the seal coat season as shown on the plans. Asphalt and aggregate rates shown on the plans are for estimating purposes only. Adjust the rates for existing conditions as directed.

316

- 4.2. Temporary Aggregate Stockpiles. The Engineer will approve the location of temporary aggregate stockpiles on the right of way before delivery. Place stockpiles in a manner that will not:
 - obstruct traffic or sight distance,
 - interfere with the access from abutting property, or
 - interfere with roadway drainage.

Locate stockpiles at least 30 ft. from roadway when possible. Sign and barricade as shown on the plans.

- 4.3. **Aggregate Furnished by the Department**. When shown on the plans, the Department will furnish aggregate to the Contractor without cost. Stockpile locations are shown on the plans.
- 4.4. **Adverse Weather Conditions**. Do not place surface treatments when, in the Engineer's opinion, general weather conditions are unsuitable. Meet the requirements for air and surface temperature shown below.
- 4.4.1. **Standard Temperature Limitations**. Apply seal coat when air temperature is above 50°F and rising. Do not apply seal coat when air temperature is 60°F and falling. In all cases, do not apply seal coat when surface temperature is below 60°F.
- 4.4.2. **Polymer-Modified Asphalt Cement Temperature Limitations**. When using materials described in Section 300.2.2., "Polymer-Modified Asphalt Cement," apply seal coat when air temperature is above 70°F and rising. Do not apply seal coat when air temperature is 80°F and falling. In all cases, do not apply seal coat when surface temperature is below 70°F.
- 4.4.3. Asphalt-Rubber Temperature Limitations. Do not place hot A-R seal coat when, in the Engineer's opinion, general weather conditions are unsuitable. Apply seal coat when the air temperature is 80°F and above, or above 70°F and rising. In all cases, do not apply seal coat when surface temperature is below 70°F.
- 4.4.4. **Cool Weather Night Air Temperature**. The Engineer reserves the right to review the National Oceanic and Atmospheric Administration (NOAA) weather forecast and determine whether the nightly air temperature is suitable for asphalt placement to prevent aggregate loss.
- 4.4.5. **Cold Weather Application**. When asphalt application is allowed outside the above temperature restrictions, the Engineer will approve the binder grade and the air and surface temperatures for asphalt material application. Apply seal coat at air and surface temperatures as directed.
- 4.5. **Mixing Hot A-R Binder**. If using A-R, mix in accordance with the approved blend design required in Section 316.2.1., "Asphalt."

At the end of each shift, provide the Engineer with production documentation that includes the following:

- amount and temperature of asphalt cement before addition of rubber,
- amount of rubber and any extender added,
- viscosity of each hot A-R batch just before roadway placement, and
- time of the rubber additions and viscosity tests.
- 4.6. **Surface Preparation**. Remove existing raised pavement markers. Repair any damage incurred by removal as directed. Remove dirt, dust, or other harmful material before sealing. When shown on the plans, remove vegetation and blade pavement edges. When directed, apply a tack coat before applying the hot A-R treatment on an existing wearing surface in accordance with Section 341.4.7.2., "Tack Coat."

4.7.

Rock Land and Shot.

4.7.1. **Definitions**.

- **Rock Land**. The area covered at the aggregate rate directed with one truckload of aggregate.
- **Shot**. The area covered by one distributor load of asphalt material.
- 4.7.2. **Setting Lengths**. Calculate the lengths of both rock land and shot. Adjust shot length to be an even multiple of the rock land. Verify that the distributor has enough asphalt material to complete the entire shot length. Mark shot length before applying asphalt. When directed, mark length of each rock land to verify the aggregate rate.

4.8. Asphalt Placement.

4.8.1. **General**. The maximum shot width is the width of the current transverse distribution test required under Section 316.3.1.3.1., "Transverse Distribution," or the width of the aggregate spreader box, whichever is less. Adjust the shot width so operations do not encroach on traffic or interfere with the traffic control plan, as directed. Use paper or other approved material at the beginning and end of each shot to construct a straight transverse joint and to prevent overlapping of the asphalt. Unless otherwise approved, match longitudinal joints with the lane lines. The Engineer may require a string line if necessary to keep joints straight with no overlapping. Use enough pressure to flare the nozzles fully.

Select an application temperature, as approved, in accordance with Item 300. Uniformly apply the asphalt material at the rate directed, within 15°F of the approved temperature, and not above the maximum allowable temperature.

4.8.2. Limitations. Do not apply asphalt to the roadway until:

- traffic control methods and devices are in place as shown on the plans or as directed,
- the loaded aggregate spreader is in position and ready to begin,
- haul trucks are loaded with enough aggregate to cover the shot area and are in place behind the spreader box, and
- rollers are in place behind the haul trucks.
- 4.8.3. **Nonuniform Application**. Stop application if it is not uniform due to streaking, ridging, puddling, or flowing off the roadway surface. Verify equipment condition, operating procedures, application temperature, and material properties. Determine and correct the cause of nonuniform application. If the cause is high- or low-emulsion viscosity, replace emulsion with material that corrects the problem.
- 4.8.4. **Test Strips**. The Engineer may stop asphalt application and require construction of test strips at the Contractor's expense if any of the following occurs:
 - nonuniformity of application continues after corrective action;
 - on three consecutive shots, application rate differs by more than 0.03 gal. per square yard from the rate directed; or
 - any shot differs by more than 0.05 gal. per square yard from the rate directed.

The Engineer will approve the test strip location. The Engineer may require additional test strips until surface treatment application meets specification requirements.

4.8.5. **Sampling**. Collect all samples in accordance with <u>Tex-500-C</u> from the distributor and with witness by the Engineer.

At least once per project, collect split samples of each binder grade and source used. The Engineer will submit one split sample to the Materials and Tests Division (MTD) for testing and retain the other split sample.

In addition, collect one sample of each binder grade and source used on the project for each production day. The Engineer will retain these samples.

The Engineer will keep all retained samples for 1 yr. for hot-applied binders and cutback asphalts, or for 2 mo. for emulsified asphalts. The Engineer may submit retained samples to MTD for testing as necessary or as requested by MTD.

The Department will furnish sampling containers in accordance with <u>Tex-500-C</u>.

- 4.9. **Aggregate Placement**. As soon as possible, apply aggregate uniformly at the rate directed without causing the rock to roll over.
- 4.9.1. **Nonuniform Application**. Stop application if it is not uniform in the transverse direction. Verify equipment condition, operating procedures, and transverse application rate. The transverse application rate should be within 1 lb. Determine and correct the cause of nonuniform application.
- 4.10. **Rolling**. Start rolling operation on each shot as soon as aggregate is applied. Use enough rollers to cover the entire mat width in one pass; i.e., one direction. Roll in a staggered pattern. Unless otherwise shown on the plans, make at least:
 - five passes or
 - three passes when the asphalt material is an emulsion.

If rollers are unable to keep up with the spreader box, stop application until rollers have caught up, or furnish additional rollers. Keep roller tires asphalt-free.

- 4.11. **Patching**. Before rolling, repair spots where coverage is incomplete. Repair can be made by hand spotting or other approved method. When necessary, apply additional asphalt material to embed aggregate.
- 4.12. **Racked-In Aggregate**. If specified on the plans, apply racked-in aggregate after patching, uniformly at the rate directed. The racked-in aggregate must be applied before opening the roadway or intersection to traffic.
- 4.13. **Brooming**. After rolling, sweep as soon as aggregate has sufficiently bonded to remove excess. In areas of racked-in aggregate, sweep as directed.
- 4.14. **Final Acceptance**. Maintain seal coat until the Engineer accepts the work. Repair any surface failures. Before final project acceptance, remove all temporary stockpiles and restore the area to the original contour and grade.

5. MEASUREMENT

- 5.1. **Asphalt Material**. Unless otherwise shown on the plans, asphalt material will be measured by one of the following methods.
- 5.1.1. **Volume**. Asphalt material, including all components, will be measured at the applied temperature by strapping the tank before and after road application. The distributor calibrated strap stick will be used for measuring the asphalt level in the distributor asphalt tank. The certified tank chart will be used to determine the beginning gallons and the final gallons in the distributor tank. The quantity to be measured for payment will be the difference between the beginning gallons and the final gallons.
- 5.1.2. **Weight**. Asphalt material will be measured in tons using certified scales meeting the requirements of Item 520, "Weighing and Measuring Equipment," unless otherwise approved. The transporting truck must have a seal attached to the draining device and other openings. Random checking on public scales at the Contractor's expense may be required to verify weight accuracy.

Upon work completion or temporary suspension, any remaining asphalt material will be weighed by a certified public weigher or measured by volume in a calibrated distributor or tank, and the quantity converted to tons at the measured temperature. The quantity to be measured will be the number of tons received minus the number of tons remaining after all directed work is complete and minus the amount used for other items.

- 5.1.3. **Quantity Adjustments**. When shown on the plans, the measured quantity will be adjusted to compensate for variation in required application or residual rates for different types of asphalt.
- 5.1.4. **Aggregate**. Unless otherwise shown on the plans, aggregate will be measured by the cubic yard in the trucks as applied on the road. Strike off the loaded aggregate for accurate measurement when directed.
- 5.2. Loading, Hauling, and Distributing Aggregate. When the Department furnishes the aggregate, the loading, hauling, and distributing will be measured by the cubic yard in the trucks as applied on the road.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Asphalt"; "Aggregate"; and "Loading, Hauling, and Distributing Aggregate" of the types and grades shown on the plans. These prices are full compensation for surface preparation; furnishing, preparing, hauling, and placing materials; removing existing pavement markers and excess aggregate; rolling; cleaning up stockpiles; and equipment, labor, tools, and incidentals.

Hauling of any aggregate to consolidate stockpiles at the end of the project when directed by the Engineer will be paid by force account work.

Item 320 Equipment for Asphalt Concrete Pavement

320

1.	DESCRIPTION
	Provide equipment to produce, haul, place, compact, and core asphalt concrete pavement.
2.	EQUIPMENT
	Ensure weighing and measuring equipment complies with Item 520, "Weighing and Measuring Equipment." Synchronize equipment to produce a mixture meeting the required proportions.
2.1.	Production Equipment. Provide:
	 drum-mix type, weigh-batch, or modified weigh-batch mixing plants that ensure uniform, continuous production;
	 automatic proportioning and measuring devices with interlock cutoff circuits that stop operations if the control system malfunctions;
	 visible readouts indicating the weight or volume of asphalt and aggregate proportions;
	 safe and accurate means to take required samples by inspection forces; permanent means to check the output of metering devices and to perform calibration and weight
	checks; and
	additive-feed systems to ensure a uniform, continuous material flow in the desired proportion.
2.1.1.	Drum-Mix Plants. Provide a mixing plant that complies with the requirements below.
2.1.1.1.	Aggregate Feed System. Provide:
	 at least one cold aggregate bin for each stockpile of individual materials used to produce the mix;
	bins designed to prevent overflow of material;
	 scalping screens or other approved methods to remove any oversized material, roots, or other objectionable materials;
	 a feed system to ensure a uniform, continuous material flow in the desired proportion to the dryer; an integrated means for moisture compensation;
	 belt scales, weigh box, or other approved devices to measure the weight of the combined aggregate; and
	 cold aggregate bin flow indicators that automatically signal interrupted material flow.
2.1.1.2.	Reclaimed Asphalt Pavement (RAP) and Recycled Asphalt Shingles (RAS) Feed Systems. Provide at least one bin for each stockpile of RAP and RAS to weigh and feed the recycled material into the hot-mix plant.
2.1.1.3.	Mineral Filler Feed System . Provide a closed system for mineral filler that maintains a constant supply with minimal loss of material through the exhaust system. Interlock the measuring device into the automatic plant controls to automatically adjust the supply of mineral filler to plant production and provide a consistent percentage to the mixture.
2.1.1.4.	Heating, Drying, and Mixing Systems. Provide:
	 a dryer or mixing system to agitate the aggregate during heating,

- a heating system that completely burns fuel and leaves no residue, and
- a recording thermometer that continuously measures and records the mixture discharge temperature.
- 2.1.1.5. **Dust Collection System**. Provide a dust collection system to collect fines generated by the drying and mixing process and reintroduce them into the mixing drum.
- 2.1.1.6. **Asphalt Binder Equipment**. Supply equipment to heat binder to the required temperature. Equip the heating apparatus with a continuously recording thermometer located at the highest temperature point. Produce a 24-hr. chart of the recorded temperature. Place a device with automatic temperature compensation that accurately meters the binder in the line leading to the mixer.

Furnish a sampling port and locate in accordance with <u>Tex-500-C</u>. Supply an additional sampling port between any additive blending device and mixer.

Supply an in-line viscosity-measuring device located between the blending unit and the mixing drum when asphalt-rubber (A-R) binder is specified. Provide a means to calibrate the meter onsite when an asphalt mass flow meter is used.

- 2.1.1.7. **Mixture Storage and Discharge**. Provide a surge-storage system to minimize interruptions during operations, unless otherwise approved. Furnish a gob hopper or other device to minimize segregation in the bin. Provide an automated system that weighs the mixture upon discharge and produces a ticket showing:
 - date,
 - project identification number,
 - plant identification,
 - mix identification,
 - vehicle identification,
 - total weight of the load,
 - tare weight of the vehicle,
 - weight of mixture in each load, and
 - load number or sequential ticket number for the day.
- 2.1.1.8. Truck Scales. Provide standard platform scales at an approved location.
- 2.1.2. **Weigh-Batch Plants**. Provide a mixing plant that complies with Section 320.2.1.1., "Drum-Mix Plants," except as required below.
- 2.1.2.1. **Screening and Proportioning**. Provide enough hot bins to separate the aggregate and to control proportioning of the mixture type specified. Supply bins that discard excessive and oversized material through overflow chutes. Provide safe access for Inspectors to obtain samples from the hot bins.
- 2.1.2.2. Aggregate Weigh Box and Batching Scales. Provide a weigh box and batching scales to hold and weigh a complete batch of aggregate. Provide an automatic proportioning system with low bin indicators that automatically stop when material level in any bin is not enough to complete the batch.
- 2.1.2.3. Asphalt Binder Measuring System. Provide bucket and scales with enough capacity to hold and weigh binder for one batch.
- 2.1.2.4. **Mixer**. Equip mixers with an adjustable automatic timer that controls the dry and wet mixing period and locks the discharge doors for the required mixing period. Furnish a pug mill with a mixing chamber large enough to prevent spillage.

- 2.1.3. **Modified Weigh-Batch Plants**. Provide a mixing plant that complies with Section 320.2.1.2., "Weigh-Batch Plants," except as specifically described below.
- 2.1.3.1. Aggregate Feeds. Aggregate control is required at the cold feeds. Hot bin screens are not required.
- 2.1.3.2. Surge Bins. Provide one or more bins large enough to produce one complete batch of mixture.
- 2.2. **Hauling Equipment**. Provide trucks with enclosed sides to prevent asphalt mixture loss. Cover each load of mixture with waterproof tarpaulins when shown on the plans or required by the Engineer. Clean all truck beds before use to ensure the mixture is not contaminated. Coat the inside truck beds, when necessary, with an approved release agent from the Department's MPL.
- 2.3. Placement and Compaction Equipment. Provide equipment that does not damage underlying pavement. Comply with laws and regulations concerning overweight vehicles. Use other equipment that will consistently produce satisfactory results, when approved.
- 2.3.1. **Asphalt Paver**. Furnish a paver that will produce a finished surface that meets longitudinal and transverse profile, typical section, and placement requirements. Ensure the paver does not support the weight of any portion of hauling equipment other than the connection. Provide loading equipment that does not transmit vibrations or other motions to the paver that adversely affect the finished pavement quality. Equip the paver with an automatic, dual, longitudinal-grade control system and an automatic, transverse-grade control system.
- 2.3.1.1. **Tractor Unit**. Supply a tractor unit that can push or propel vehicles, dumping directly into the finishing machine to obtain the desired lines and grades to eliminate any hand finishing. Equip the unit with a hitch able to maintain contact between the hauling equipment's rear wheels and the finishing machine's pusher rollers while mixture is unloaded.
- 2.3.1.2. **Screed**. Provide a heated compacting screed that will produce a finished surface that meets longitudinal and transverse profile, typical section, and placement requirements. Screed extensions must provide the same compacting action and heating as the main unit unless otherwise approved.
- 2.3.1.3. **Grade Reference**. Provide a grade reference with enough support that the maximum deflection does not exceed 1/16 in. between supports. Ensure that the longitudinal controls can operate from any longitudinal grade reference, including a string line, ski, mobile reference, or joint matching shoes.
- 2.3.2. **Spray Paver**. Furnish a spray paver that will spray the membrane, apply the type and grade of mix shown on the plans, and level the surface of the pavement layer in a single pass. Configure the spray paver so that no equipment tires will drive through the membrane.
- 2.3.2.1. **Membrane Storage Tank and Distribution System**. Equip the spray paver with an insulated storage tank with a minimum capacity of 900 gal., unless otherwise approved. Provide a metered mechanical pressure sprayer on the spray paver to apply the membrane at the specified rate. Provide a readout device on the spray paver to monitor the membrane application rate.

Unless otherwise directed, furnish a volumetric calibration and strap stick for the tank in accordance with <u>Tex-922-K</u>, Part I. Calibrate the tank within the previous 5 yr. of the date first used on the project. The Engineer may verify calibration accuracy in accordance with <u>Tex-922-K</u>, Part II.

- 2.3.3. **Material Transfer Devices**. Provide the specified type of device when shown on the plans. Ensure the devices provide a continuous, uniform mixture flow to the asphalt paver. Provide windrow pickup equipment, when used, constructed to pick up substantially all roadway mixture placed in the windrow.
- 2.3.4. **Remixing Equipment**. Provide equipment, when required, that includes a pug mill, variable pitch augers, or variable diameter augers operating under a storage unit with a minimum capacity of 8 ton.

- 2.3.5. **Motor Grader**. Provide a self-propelled grader, when allowed, with a blade length of at least 12 ft. and a wheelbase of at least 16 ft.
- 2.3.6. **Thermal Imaging System or Hand-Held Thermal Camera**. Provide a thermal imaging system or hand-held thermal camera meeting the requirements of <u>Tex-244-F</u>.
- 2.3.7. **Rollers**. Provide rollers meeting the requirements of Item 210, "Rolling," for each type of roller required for compaction.
- 2.3.8. Straightedges and Templates. Furnish 10-ft. straightedges and other templates as required or approved.
- 2.4. **Field Laboratory**. Provide and maintain a Type D structure (hot-mix asphalt laboratory) unless otherwise shown on the plans in accordance with Item 504, "Field Office and Laboratory."
- 2.5. **Coring Equipment**. Provide equipment suitable to obtain a pavement specimen meeting the dimensions for testing when coring is required.

3. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly, but will be subsidiary to pertinent Items.

Item 330 Limestone Rock Asphalt Pavement

1. DESCRIPTION

Construct a base course, a surface course, a level-up course, or any combination of these courses of the types and grades shown on the plans using a cold-mixed material consisting of native limestone rock asphalt (LRA) aggregate, fluxing material, water, and when specified, additives and virgin aggregates.

2. MATERIALS

- 2.1. Lime Rock Asphalt (LRA) Mixture. Furnish LRA in accordance with <u>DMS-9210</u>, "Limestone Rock Asphalt," of the type, grade, and surface aggregate classification (SAC) shown on the plans.
- 2.2. **Tack Coat**. Furnish CSS-1H, SS-1H, or a performance-graded (PG) binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300, "Asphalts, Oils, and Emulsions," unless otherwise shown on the plans or approved. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use. Verify that emulsified asphalt proposed for use meets the minimum residual asphalt percentage in accordance with Item 300, if required.

The Engineer will obtain at least one sample of the tack coat per project and test the sample for specification compliance. The Engineer will obtain the sample from the asphalt distributor immediately before use.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement."

4. CONSTRUCTION

Provide quality control (QC) testing as needed to meet the requirements of this Item. The Department will perform quality assurance (QA) testing.

4.1. Quality Control Plan (QCP). Develop a written QCP and submit for approval before beginning production. Follow QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Include the following items in the QCP.

- 4.1.1. Project Personnel. For project personnel, include:
 - a list of individuals responsible for QC with authority to take corrective action, and
 - current contact information for each individual listed.
- 4.1.2. **Loading and Transporting**. For loading and transporting, include:
 - type and application method for release agents, and
 - truck and rail car loading procedures to avoid segregation.
- 4.1.3. Placement and Compaction. For placement and compaction, include:
 - proposed arrangements for any required pre-paving meetings, including dates and locations;

- type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils;
- procedures for the transfer of mixture into the paver while avoiding segregation and preventing material spillage;
- process to balance production, delivery, paving, and compaction to achieve continuous placement operations;
- paver operations (e.g., operation of wings and height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and
- procedures to construct quality longitudinal and transverse joints.
- 4.2. **Stockpiling of LRA**. Provide a smooth and well-drained area, cleared of trash, weeds, and grass if storing LRA at the project site. Stockpile, handle, and load LRA in a manner that will minimize aggregate degradation and segregation. Avoid contamination and mixing of stockpiles. The Engineer may reject stockpiled materials that contact the earth or other objectionable material.
- 4.3. **Hauling Operations**. Transport the LRA mixture to the project or delivery point in trucks or rail cars as needed. Clean all truck beds or rail cars before use to ensure mixture is not contaminated. Use a release agent on the Department's MPL to coat truck beds and inside rail cars when necessary. Waterproof tarpaulins are not required to cover loads.
- 4.4. **Placement Operations**. Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture in conformance with the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of mixture by at least 6 in. Place mixture so longitudinal joints on the surface course coincide with lane lines, or as directed. Ensure that all finished surfaces will drain properly.

When desired, dump the asphalt mixture in a windrow and then place it in the finishing machine with windrow pickup equipment unless otherwise shown on the plans. Prevent the windrow pickup equipment from contaminating the mixture.

Defer compaction after placing the paving mixture as directed to allow for volatilization. Allow the previous pavement course to dry and cure before placing the next course when placing more than one course. The course will be considered cured if the hydrocarbon volatile content of the mixture is 0.4% or less by weight of the mixture when tested in accordance with <u>Tex-213-F</u>, unless otherwise directed.

Use a motor grader to spread the mixture when shown on the plans or as approved. Thoroughly aerate the mixture and spread into place with a power motor grader in a uniform layer. Placement in narrow strips or small irregular areas may require hand spreading.

- 4.4.1. **Weather Conditions**. Place the mixture when the roadway surface temperature is 60°F or higher unless otherwise approved. Place the mixture only when the weather conditions and moisture conditions of the roadway surface are suitable in the Engineer's opinion.
- 4.4.2. **Tack Coat**. Clean the surface before placing the tack coat. Apply tack coat uniformly at the approved rate, unless otherwise directed. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area. Apply a thin, uniform tack coat to all contact surfaces of curbs, structures, and joints. Prevent splattering of the tack coat when placed adjacent to curb, gutter, and structures. Roll the tack coat with a pneumatic-tire roller to remove streaks and other irregular patterns when directed.
- 4.5. **Compaction**. Furnish the type, size, and number of rollers required for compaction, as approved. Furnish at least one medium pneumatic-tire roller (minimum 12-ton weight). Use <u>Tex-207-F</u>, Part IV, to establish rolling patterns that achieve maximum compaction. Follow the selected rolling pattern unless changes that affect compaction occur in the mixture or placement conditions. Establish a new rolling pattern when such changes

occur. Compact the pavement to the cross-section of the finished paving mixture in conformance with the plans and specifications. Operate vibratory rollers in static mode when not compacting or changing directions, or when the plan depth of the pavement mat is less than 1-1/2 in., unless otherwise directed.

Start by first rolling the joint with the adjacent pavement and then continue by rolling longitudinally at the sides when rolling using the three-wheel, tandem, or vibratory rollers. Proceed toward the center of the pavement, overlapping on successive trips by at least 1 ft., unless otherwise directed. Make alternate trips of the roller slightly different in length. Begin rolling at the low side and progress toward the high side on superelevated curves unless otherwise directed.

Avoid displacement of the mixture. Correct any displacement that may occur to the Engineer's satisfaction. Ensure pavement is fully compacted before allowing rollers to stand on the pavement. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed. Keep diesel, gasoline, oil, grease, and other foreign matter off the mixture.

Use tamps to thoroughly compact the edges of the pavement along curbs, headers, and similar structures and in locations that will not allow thorough compaction with the rollers. The Engineer may require rolling using a trench roller on widened areas, in trenches, and in other limited areas.

4.6. **Irregularities**. Immediately take corrective actions if surface irregularities, including segregation, rutting, raveling, flushing, fat spots, mat slippage, color, texture, roller marks, tears, gouges, streaks, or uncoated aggregate particles are detected. The Engineer may allow placement to continue for no more than 1 day of production while the Contractor takes appropriate action. Suspend paving if the problem still exists after that day until it is corrected to the Engineer's satisfaction.

Remove and replace any mixture that does not bond to the existing pavement or has other surface irregularities identified above at the Contractor's expense and to the Engineer's satisfaction.

4.7. **Ride Quality**. Use Surface Test Type A to evaluate ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

LRA pavement will be measured by the ton of composite LRA pavement of the type used in the completed and accepted work in conformance with the plans and specifications. Measure on scales in accordance with Item 520, "Weighing and Measuring Equipment." Keep records on tare weight, gross weight, and net weight of the LRA paving mixture for each load of the same type of mixture. The Materials and Tests Division will measure and report the moisture content in accordance with <u>Tex-212-F</u>, Part II, of the LRA paving mixture used to determine payment at the plant. All water and light hydrocarbon volatiles in the mixture measured in accordance with <u>Tex-212-F</u>, Part II, in excess of 6.0% by weight at the time of weighing, will be deducted from the net weight to determine the quantity for payment.

PAYMENT

6.

The work performed and materials furnished in accordance with this Item and measured as provided under Article 330.5., "Measurement," will be paid for at the unit price bid for "Limestone Rock Asphalt Pavement" of the type, grade, and SAC specified.

This price is full compensation for surface preparation, materials including tack coat, placement, equipment, labor, tools, and incidentals.

Payment adjustment for ride quality, when required, will be determined in accordance with Item 585.

1. DESCRIPTION

Construct a cold-laid pavement layer consisting of a compacted mixture of aggregate and asphalt material mixed hot in a mixing plant.

This Item governs mixtures designed for cold placement, defined as placement temperatures below 175°F. If the mixture placement temperature is greater than 175°F, then design, produce, place, and compact the mixture in conformance with the applicable hot-mix asphalt specification.

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met when the Contractor makes a source or formulation change, and may require a new laboratory mixture design, trial batch, or both. The Engineer may sample and test project materials at any time during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. Aggregate. Furnish aggregates from sources that conform to the requirements shown in Table 1 and in accordance with this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified, or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse aggregate, intermediate aggregate, or fine aggregate. Supply aggregates that meet the definitions in <u>Tex-100-E</u> for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles Abrasion, Magnesium Sulfate Soundness, and Micro-Deval Abrasion Tests. Perform all other aggregate quality tests shown in Table 1. Document all test results in the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis in accordance with <u>Tex-200-F</u>, Part II.
- 2.1.1. **Coarse Aggregate**. Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for hot mix listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in hot-mix asphalt (HMA).

For sources not listed in the Department's BRSQC:

- build an individual stockpile for each material;
- request that the Department test the stockpile for specification compliance; and
- once approved, do not add material to the stockpile unless otherwise approved.

Provide aggregate from non-listed sources only when tested by the Engineer and approved before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements only apply to aggregates used on the surface of travel lanes. SAC requirements apply to aggregates used on surfaces other than travel lanes when shown on the plans. The SAC for sources in the Department's *Aggregate Quality Monitoring Program* (AQMP) (Tex-499-A) is listed in the BRSQC.

- 2.1.1.1. Blending Class A and Class B Aggregates. Class B aggregate meeting all other requirements shown in Table 1 may be blended with a Class A aggregate to meet requirements for Class A materials. Ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source when blending Class A and Class B aggregates to meet a Class A requirement. Blend by volume if the bulk-specific gravities of the Class A and Class B aggregates differ by more than 0.300.
- 2.1.2. Fine Aggregate. Fine aggregates consist of manufactured sands, screenings, and field sands. Fine aggregate stockpiles must meet the gradation requirements shown in Table 2. Supply fine aggregates that are free of organic impurities. The Engineer may test the fine aggregate in accordance with <u>Tex-408-A</u> to verify the material is free of organic impurities. No more than 15% of the total aggregate may be field sand or other uncrushed fine aggregate. Use fine aggregate, except field sand, from coarse aggregate sources that meet the requirements shown in Table 1 unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve, and verify that it meets the requirements in Table 1 for crushed face count (<u>Tex-460-A</u>) and flat and elongated particles (<u>Tex-280-F</u>).

Aggregate Quality Req	uirements	
Property	Test Method	Requirement
Coarse Aggreg	ate	
SAC	<u>Tex-499-A</u> (AQMP)	As shown on the plans
Deleterious material, %, Max	Tex-217-F, Part I	1.5
Decantation, %, Max	Tex-217-F, Part II	1.5
Micro-Deval abrasion, %	Tex-461-A	Note 1
Los Angeles abrasion, %, Max	<u>Tex-410-A</u>	40
Magnesium sulfate soundness, 5 cycles, %, Max	Tex-411-A	30 ²
Crushed face count, ³ %, Min	Tex-460-A, Part I	85
Flat and elongated particles @ 5:1, %, Max	Tex-280-F	10
Fine Aggregat	te	
Linear shrinkage, %, Max	<u>Tex-107-E</u>	3
Combined Aggreg	jates ⁴	•
Sand equivalent, %, Min	Tex-203-F	45
		6.01 1.6

Table 1

1. Not used for acceptance purposes. Used by the Engineer as an indicator of the need for further investigation.

2. Unless otherwise shown on the plans.

3. Only applies to crushed gravel.

 Aggregates, without mineral filler or additives, combined as used in the job-mix formula (JMF).

Gradation Require	Table 2 ments for Fine Aggregate
Sieve Size	% Passing by Weight or Volume
3/8"	100
#8	70–100
#200	0–15

T-1-1- 0

2.2.

Mineral Filler. Mineral filler consists of finely divided mineral matter such as agricultural lime, crusher fines, hydrated lime, or fly ash. Mineral filler is allowed unless otherwise shown on the plans. Use no more than 2% hydrated lime or fly ash unless otherwise shown on the plans. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

■ is sufficiently dry, free-flowing, and free of clumps and foreign matter as determined by the Engineer;

- does not exceed 3% linear shrinkage when tested in accordance with <u>Tex-107-E</u>; and
- meets the gradation requirements shown in Table 3.

Tab Gradation Requireme	
Sieve Size	% Passing by Weight or Volume
#8	100
#200	55–100

- 2.3. **Baghouse Fines**. Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.
- 2.4. Binder Material. Furnish asphalt binder, primer, additives, and water, unless otherwise shown on the plans.
- 2.4.1. **Asphalt Binder**. Provide the asphalt shown on the plans, meeting the requirements of Item 300, "Asphalts, Oils, and Emulsions."
- 2.4.2. **Primer**. Provide an approved asphalt primer consisting of a blend of asphalt cement and hydrocarbon volatiles.
- 2.4.3. Water. Provide water that meets the requirements of Item 204, "Sprinkling."
- 2.4.4. Additives. Use the type and rate of additive specified when shown on the plans. Additives that facilitate mixing or improve the quality of the mixture may be allowed when approved. Provide the Engineer with documentation, such as the bill of lading, showing the quantity of additives used on the project unless otherwise directed.

When lime or liquid antistripping agents are used, add in accordance with Item 301, "Asphalt Antistripping Agents." Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime back into the drum.

2.5. **Tack Coat**. Furnish CSS-1H, SS-1H, or a performance-graded (PG) binder with a minimum high-temperature grade of PG 58 for tack coat in accordance with Item 300. Specialized or preferred tack coat materials may be allowed or required when shown on the plans. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use. The Department may sample the tack coat to verify specification compliance.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement."

4. CONSTRUCTION

Design, produce, store, transport, place, and compact the specified paving mixture in accordance with this Item. Provide the mix design unless otherwise shown on the plans. The Department will perform quality assurance (QA) testing. Provide quality control (QC) testing as needed to meet the requirements of this Item.

4.1. Mixture Design.

4.1.1. **Design Requirements**. Use the typical weight design example in accordance with <u>Tex-204-F</u>, Part I, to design a paving mixture consisting of a uniform mixture of aggregate, asphalt material, primer, additives, and water, if allowed, that meets the requirements shown in Tables 4 and 5, unless otherwise shown on the

334

plans. Ensure that the mixture leaves the plant in a workable condition. Provide materials that remain workable in a stockpile for at least 6 mo.

Submit a new mixture design at any time during the project. The Engineer must approve all mixture designs before the Contractor can begin production.

4.1.2. Job-Mix Formula Approval. The job-mix formula (JMF) is the combined aggregate gradation and target asphalt percentage used to establish target values for mixture production. JMF1 is the original laboratory mixture design used to produce the trial batch. The Engineer will verify JMF1 based on plant-produced mixture from the trial batch unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. Provide the Engineer with split samples of the mixtures and blank samples used to determine the ignition oven correction factors. The Engineer will determine the aggregate and asphalt correction factors from the ignition oven in accordance with Tex-236-F.

Master (Gradation Limits	(% Passing by \	Neight or Volum	ne) and VMA Red	quirements
Sieve	Α	В	C	D	F
Size	Coarse	Fine	Coarse	Fine	Fine
Size	Base	Base	Surface	Surface	Mixture
2"	100.0 ¹	_	_	_	-
1-1/2"	98.0-100.0	100.0 ¹	_	_	_
1"	78.0-94.0	98.0-100.0	100.0 ¹	_	_
3/4"	64.0-85.0	84.0-98.0	95.0-100.0	100.0 ¹	_
1/2"	50.0-70.0	_	_	98.0-100.0	100.0 ¹
3/8"	_	60.0-80.0	70.0-85.0	85.0-100.0	98.0-100.0
#4	30.0-50.0	40.0-60.0	43.0-63.0	50.0-70.0	70.0–90.0
#8	22.0-36.0	29.0-43.0	32.0-44.0	35.0-46.0	38.0-48.0
#30	8.0-23.0	13.0-28.0	14.0-28.0	15.0-29.0	12.0-27.0
#50	3.0-19.0	6.0-20.0	7.0–21.0	7.0-20.0	6.0–19.0
#200	2.0-7.0	2.0-7.0	2.0-7.0	2.0-7.0	2.0-7.0
		Design VMA	, ² % Minimum	•	
_	12.0	13.0	14.0	15.0	16.0
	Produc	tion (Plant-Prod	luced) VMA, ² %	Minimum	
-	11.5	12.5	13.5	14.5	15.5

Table 4 Monton Credation Limit (0) -

Defined as maximum sieve size. No tolerance allowed. 1.

2. Voids in mineral aggregates.

Laboratory Mixture Design Properties					
Property Test Method Requirement					
Target laboratory-molded density, % ¹	<u>Tex-207-F</u>	94.0 ± 1.5			
Hveem stability, Min	<u>Tex-208-F</u>	35			
Cantabro loss, %, Max	<u>Tex-245-F</u>	10			
Hydrocarbon-volatile content, %, Max	Tex-213-F	0.6			
Moisture content, %, Max ²	Tex-212-F	1.0			
Boil test, %, Max ³	<u>Tex-530-C</u>	10			

Tabla 5

1. Unless otherwise shown on the plans.

2. Unless otherwise approved.

3. Limit may be increased or eliminated when approved.

- 4.2. Production Operations. Perform a new trial batch when the plant or plant location is changed. Take corrective action and obtain approval to proceed after any production suspension for noncompliance with the specification.
- 4.2.1. Stockpiling of Aggregates. Provide a smooth and well-drained area, cleared of trash, weeds, and grass. Build stockpiles in a manner that will minimize aggregate degradation and segregation. Avoid contamination and mixing of stockpiles. Provide aggregate stockpiles for at least 2 days' production before beginning plant operations. Maintain at least a 2-day aggregate supply throughout the project unless otherwise directed.

Stockpile aggregate for each source and type separately. The Engineer may reject stockpiled materials that contact the earth or other objectionable material.

- 4.2.2. **Storage and Heating of Asphalt Materials**. Provide enough asphalt material storage capacity to meet the requirements of the plant. Do not heat the asphalt binder above the temperatures specified in Item 300, or outside the manufacturer's recommended values. Keep all equipment used in the storage and handling of asphalt material clean at all times and operate the equipment in a manner that will prevent contamination by foreign matter.
- 4.2.3. **Storage of the Asphalt Mixture**. Store the asphalt mixture in a surge-storage system or in a stockpile. Provide a smooth and well-drained area, cleared of trash, weeds, and grass, if the asphalt mixture is stored in a stockpile. Build stockpiles in a manner that will minimize aggregate degradation and segregation. Avoid contamination and mixing of stockpiles.
- 4.2.4. **Mixing and Discharge of Materials**. Produce the mixture at a discharge temperature between 145°F and 275°F, as directed. Do not allow the temperature to vary from the selected temperature by more than 25°F. The Department will not pay for or allow placement of any mixture produced above 300°F.
- 4.2.5. **Moisture Content**. Furnish the mixture at a moisture content of no more than 1% by weight when discharged from the mixer, unless otherwise shown on the plans or approved. Cease operations at moisture content above 1% until corrective actions reduce moisture content.
- 4.3. **Hauling Operations**. Clean all truck beds before use to ensure mixture is not contaminated. Use a release agent on the Department's MPL to coat truck beds when a release agent is necessary.
- 4.4. **Placement Operations**. Prepare the surface by removing raised pavement markers and objectionable material, such as moisture, dirt, sand, leaves, and other loose impediments, from the surface before placing mixture. Remove vegetation from pavement edges. Place mixture on the road below 175°F. Place the mixture to produce a smooth, finished surface with a uniform appearance and texture that meet typical section requirements. Offset longitudinal joints of successive courses of mixture by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide with lane lines, or as directed. Ensure that all finished surfaces will drain properly.

When desired, dump the asphalt mixture in a windrow and then place in the finishing machine with windrow pickup equipment unless otherwise shown on the plans. Prevent the windrow pickup equipment from contaminating the mixture.

Defer compaction after placing the paving mixture, as directed, to allow for volatilization. Allow the previous course to dry and cure before placing the next course when placing more than one pavement course. Consider the course cured if the hydrocarbon volatile content of the mixture is 0.4% or less by weight of the mixture when tested in accordance with <u>Tex-213-F</u>, unless otherwise directed.

Use a motor grader to spread the mixture when shown on the plans or approved. Thoroughly aerate the mixture and spread into place using a power motor grader in a uniform layer. Placement in narrow strips or small irregular areas may require hand-spreading.

- 4.4.1. **Weather Conditions**. Place the mixture when the roadway surface temperature is 60°F or higher, unless otherwise approved. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable in the opinion of the Engineer unless otherwise shown on the plans.
- 4.4.2. **Tack Coat**. Clean the surface before placing the tack coat. Apply tack coat uniformly at the approved rate unless otherwise directed. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area. Apply a thin, uniform tack coat to all contact surfaces of curbs, structures, and joints. Prevent splattering of the tack coat when placed adjacent to curb, gutter, and structures. Roll the tack coat using a pneumatic tire roller when directed.

2024 Specifications

4.5. Compaction. Furnish the type, size, and number of rollers required for compaction as approved. Furnish at least one medium pneumatic tire roller (minimum 12-ton weight). Use the control strip method in accordance with <u>Tex-207-F</u>, Part IV, to establish rolling patterns that achieve maximum compaction. Follow the selected rolling pattern unless changes that affect compaction occur in the mixture or placement conditions. Establish a new rolling pattern when such changes occur. Compact the pavement to the cross-section of the finished paving mixture shown on the plans and in accordance with specifications. Operate vibratory rollers in static mode when not compacting, when changing directions, or when the plan depth of the pavement mat is less than 1-1/2 in., unless otherwise directed.

Start by first rolling the joint with the adjacent pavement and then continue by rolling longitudinally at the sides when rolling using three-wheel tandem or vibratory rollers. Proceed toward the center of the pavement, overlapping on successive trips by at least 1 ft., unless otherwise directed. Make alternating trips of the roller slightly different in length. Begin rolling at the low side on superelevated curves, and progress toward the high side unless otherwise directed.

Avoid displacement of the mixture. Correct any displacement that may occur to the satisfaction of the Engineer. Ensure pavement is fully compacted before allowing rollers to stand on the pavement. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed. Keep diesel, gasoline, oil, grease, and other foreign matter off the mixture.

Use tamps to thoroughly compact the edges of the pavement along curbs, headers, and similar structures, and in locations that will not allow thorough compaction by the rollers. The Engineer may require rolling using a trench roller on widened areas, in trenches, and in other limited areas.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

4.6. **Production Testing and Operational Tolerances.** The aggregate gradation and the asphalt binder content of the produced mixture must not vary from the JMF by more than the percentage point tolerances shown in Table 6. The gradation of the produced mixture may fall outside the master grading limits for any of the sieve sizes from 1-1/2 in.–No. 50 if it is within the JMF tolerances. The aggregate gradation of the No. 200 sieve may not exceed the master gradations shown in Table 4. Any sieve size shown in Table 4 with 100% passing requirements will be allowed a 2% tolerance before the material is considered out of specification.

The Engineer may allow alternate methods for determining the asphalt content and aggregate gradation if the aggregate mineralogy is such that <u>Tex-236-F</u> does not yield reliable results. Provide evidence to the Engineer that results from <u>Tex-236-F</u> are not reliable before an alternate method will be allowed. Use the applicable test procedure as directed if an alternate test method is allowed.

Cease production if three consecutive tests indicate that the material produced exceeds the tolerances shown in Table 6 for any individual sieve or laboratory-molded density until corrective actions are taken and the results approved. Cease production if two consecutive tests indicate that the asphalt binder content tolerances shown in Table 6 are exceeded until corrective actions are taken and the results approved.

Cease production if the Hveem stability shown in Table 5 is not met for three consecutive tests until corrective actions are taken and the results approved.

Operational Tolerance	es	
Property	Test Method	Operational Tolerance From JMF
Individual % retained for sieve sizes smaller than 1-1/2" and larger than #8	Tex-200-F	±5.0
Individual % retained for sieve sizes smaller than #8		±3.0
Asphalt binder content, %	<u>Tex-236-F</u>	±0.3
Laboratory-molded density. %	Tex-207-F	+1.0

Table 6 Operational Tolerances

4.7. **Irregularities**. Immediately take corrective action if surface irregularities, including segregation, rutting, raveling, flushing, fat spots, mat slippage, color, texture, roller marks, tears, gouges, streaks, or uncoated aggregate particles, are detected. The Engineer may suspend production or placement operations until the problem is corrected.

Remove and replace any mixture that does not bond to the existing pavement or has other surface irregularities identified above at the expense of the Contractor and to the satisfaction of the Engineer.

4.8. **Ride Quality**. Use Surface Test Type A to evaluate ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

This Item will be measured by the ton of composite asphalt concrete mixture of the type used in the completed and accepted work. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment."

For mixture produced by a weigh batch plant or a modified weigh batch plant, measurement will be determined on the batch scales unless surge storage or stockpiling is used. Keep records of the number of batches, batch design, and the weight of the composite asphalt concrete mixture. The composite asphalt concrete mixture is defined as the asphalt, primer, aggregate, additives, and any residual moisture that are not designated to be deducted. Where surge storage or stockpiling is used, measurement of the material taken from the surge storage bin or stockpile will be taken using truck scales or suspended hopper scales.

PAYMENT

6.

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit bid price for "Hot-Mix Cold-Laid Asphalt Concrete Pavement" of the mixture type, SAC, and asphalt binder specified.

This price is full compensation for surface preparation, materials including tack coat, placement, equipment, labor, tools, and incidentals.

Payment adjustment for ride quality, when required, will be determined in accordance with Item 585.

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) pavement layer composed of a compacted, dense-graded mixture of aggregate, asphalt binder, and additives mixed hot in a mixing plant. Payment adjustments will apply to HMA placed under this Specification unless the HMA is deemed exempt in accordance with Section 341.4.9.4., "Exempt Production."

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met and document all material source changes when the Contractor makes a source or formulation change. The Engineer may sample and test project materials anytime during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. Aggregate. Furnish aggregates from sources that conform to the requirements shown in Table 1 and this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse, intermediate, or fine aggregate. Aggregate from reclaimed asphalt pavement (RAP) is not required to meet Table 1 requirements unless otherwise shown on the plans. Supply aggregates that meet the definitions in <u>Tex-100-E</u> for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests shown in Table 1. Document all test results in the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis in accordance with <u>Tex-200-F</u>, Part II.
- 2.1.1. **Coarse Aggregate**. Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for HMA listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in HMA.

For sources not listed in the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance;
- allow 30 calendar days for the Engineer to sample, test, and report results;
- use only when tested and approved; and
- once approved, do not add additional material to the stockpile unless otherwise allowed by the Engineer.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements apply only to aggregates used on the surface of travel lanes, unless otherwise shown on the plans. The SAC for sources in the Department's *Aggregate Quality Monitoring Program* (AQMP) (Tex-499-A) is listed in the BRSQC.

2.1.1.1. Blending Class A and Class B Aggregates. Class B aggregate meeting all other requirements shown in Table 1 may be blended with a Class A aggregate to meet requirements for Class A materials, unless otherwise shown on the plans. When blending Class A and Class B aggregates to meet a Class A requirement, ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source, unless otherwise shown on the plans. Blend by volume if the bulk specific gravities of the Class A and Class B aggregates differ by more than 0.300. Coarse aggregate from RAP and recycled asphalt shingles (RAS) will be considered as Class B aggregate for blending purposes.

The Engineer may perform tests anytime during production, when the Contractor blends Class A and Class B aggregates to meet a Class A requirement. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks to verify the percent of Class A aggregate retained on the No. 4 sieve. The Engineer will use the gradations supplied by the Contractor in the mixture design report as an input for the template. A failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2. **Micro-Deval Abrasion**. The Engineer will perform at least one Micro-Deval abrasion test in accordance with <u>Tex-461-A</u> for each coarse aggregate source used in the mixture design that has a rated source soundness magnesium (RSSM) loss value greater than 15 as listed in the BRSQC. The Engineer will perform testing before the start of production and may perform additional testing anytime during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

Mg_{est.} = (RSSM)(MD_{act.}/RSMD)

where: $Mg_{est.}$ = magnesium sulfate soundness loss RSSM = rated source soundness magnesium $MD_{act.}$ = actual Micro-Deval percent loss RSMD = rated source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Materials and Tests Division, and additional testing may be required before granting approval.

2.1.2. Intermediate Aggregate. Aggregates not meeting the definition of coarse or fine aggregate will be defined as intermediate aggregate. Supply intermediate aggregates, when used, that are free of organic impurities. Supply intermediate aggregate from coarse aggregate sources, when used, that meet the requirements shown in Table 1, unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve, and verify that it meets the requirements in Table 1 for crushed face count (<u>Tex-460-A</u>) and flat and elongated particles (<u>Tex-280-F</u>).

2024 Specifications

2.1.3. Fine Aggregate. Fine aggregates consist of manufactured sands, screenings, and field sands. Fine aggregate stockpiles must meet the fine aggregate properties in accordance with Table 1 and the gradation requirements in accordance with Table 2. Supply fine aggregates that are free of organic impurities. The Engineer may test the fine aggregate in accordance with <u>Tex-408-A</u> to verify the material is free of organic impurities. Unless otherwise shown on the plans, at most 10% of the total aggregate may be field sand or other uncrushed fine aggregate. Use fine aggregate, except field sand, from coarse aggregate sources that meet the requirements shown in Table 1, unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve and verify that it meets the requirements in Table 1 for crushed face count (Tex-460-A) and flat and elongated particles (Tex-280-F).

_ . . .

Table 1	
gregate Quality Requirements	
Test Method	Requirement
Coarse Aggregate	
<u>Tex-499-A</u> (AQMP)	As shown on the plans
<u>Tex-217-F</u> , Part I	1.5
<u>Tex-217-F,</u> Part II	1.5
<u>Tex-461-A</u>	Note ¹
<u>Tex-410-A</u>	40
<u>Tex-411-A</u>	30
Tex-460-A, Part I	85
<u>Tex-280-F</u>	10
Fine Aggregate	
Tex-107-E	3
Tex-203-F	45 ³
Tex-408-A	Note ⁴
	Coarse Aggregate Tex-499-A (AQMP) Tex-217-F, Part I Tex-401-A Tex-410-A Tex-400-A, Part I Tex-460-A, Part I Tex-280-F Fine Aggregate Tex-107-E Tex-203-F

 Used to estimate the magnesium sulfate soundness loss in accordance with Section 341.2.1.1.2., "Micro-Deval Abrasion."

2. Only applies to crushed gravel.

- 3. The Department may perform <u>Tex-252-F</u> on fine aggregates not meeting this minimum requirement. Fine aggregates with a methylene blue value of 10.0 mg/g or less may be used.
- 4. Optional test.

ements for Fine Aggregate
% Passing by Wt. Or Volume
100
70–100
0–30

Table 2	
Gradation Requirements for Fine Aggregate	

- 2.2. **Mineral Filler**. Mineral filler consists of finely divided mineral matter such as agricultural lime, crusher fines, hydrated lime, or fly ash. Mineral filler is allowed unless otherwise shown on the plans. Use no more than 2% hydrated lime or fly ash, unless otherwise shown on the plans. Use no more than 1% hydrated lime if a substitute binder is used, unless otherwise shown on the plans or allowed. Test all mineral fillers except hydrated lime and fly ash in accordance with <u>Tex-107-E</u> to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:
 - is dry enough, free-flowing, and free of clumps and foreign matter as determined by the Engineer;
 - does not exceed 3% linear shrinkage when tested in accordance with <u>Tex-107-E</u>; and
 - meets the gradation requirements shown in Table 3, unless otherwise shown on the plans.

/t. or Volume
00
-1(

Table 3 Gradation Requirements for Mineral Fill

- 2.3. **Baghouse Fines**. Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.
- 2.4. **Asphalt Binder**. Furnish the type and grade of performance-graded (PG) asphalt binder shown on the plans that meets the requirements of Item 300, "Asphalts, Oils, and Emulsions."
- 2.5. **Tack Coat**. Furnish CSS-1H, SS-1H, EBL, or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300. Specialized tack coat materials on the MPL for *Tracking Resistant Asphalt Interlayer* (TRAIL) will be allowed or required when shown on the plans. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required in conformance with the manufacturer's recommendation for approved TRAIL products on the MPL.
- 2.6. Additives. Use the type of additive specified when shown on the plans. Use the rate of additive specified in conformance with the manufacturer's recommendation. Additives that facilitate mixing and compaction or improve the quality of the mixture are allowed when approved. Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.
- 2.6.1. Lime and Liquid Antistripping Agent. Lime or liquid antistripping agent is required when shown on the plans. When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.
- 2.6.2. Warm-Mix Asphalt (WMA). WMA is defined as HMA that is produced within a target temperature discharge range of 215°F and 275°F using approved WMA additives or processes from the MPL.

WMA is allowed for use on all projects and is required when shown on the plans. When WMA is required, the maximum placement or target discharge temperature for WMA will be set at a value at or below 275°F.

Department-approved WMA additives or processes may be used to facilitate mixing and compaction of HMA produced at target discharge temperatures above 275°F; however, such mixtures will not be defined as WMA.

2.6.3. Compaction Aid. Compaction aid is defined as a Department-approved chemical warm-mix additive, denoted as "chemical additive" on the MPL, that is used to facilitate mixing and compaction of HMA at a discharge temperature greater than 275°F.

Compaction aid is allowed for use on all projects. Compaction aid is required when shown on the plans or as required in Section 341.4.7.1., "Weather Conditions."

Warm-mix foaming processes, denoted as "foaming process" on the MPL, may be used to facilitate mixing and compaction of HMA at target discharge temperatures greater than 275°F; however, warm-mix foaming processes are not defined as a compaction aid.

2.7. **Recycled Materials**. Use of RAP and RAS is permitted unless otherwise shown on the plans. Use of RAS is restricted to only intermediate and base mixes unless otherwise shown on the plans. Do not exceed the maximum allowable percentages of RAP and RAS in accordance with Table 4. The allowable percentages in accordance with Table 4 may be decreased or increased when shown on the plans. Determine the asphalt binder content and gradation of the RAP and RAS stockpiles for mixture design purposes in accordance with <u>Tex-236-F</u>, Part I. The Engineer may verify the asphalt binder content of the stockpiles anytime during

production. Perform other tests on RAP and RAS when shown on the plans. Asphalt binder from RAP and RAS is designated as recycled asphalt binder. Calculate and ensure that the ratio of the recycled asphalt binder to total binder does not exceed the percentages in accordance with Table 5 during mixture design and HMA production when RAP or RAS is used. Use a separate cold feed bin for each stockpile of RAP and RAS during HMA production. Surface, intermediate, and base mixes referenced in Table 4 and Table 5 are defined as follows, unless otherwise shown on the plans.

- **Surface**. The final HMA lift placed at the top of the pavement structure.
- Intermediate. Mixtures placed below an HMA surface mix and less than or equal to 8.0 in. below the riding surface.
- Base. Mixtures placed greater than 8.0 in. below the riding surface. Unless otherwise shown on the plans, mixtures used for bond breaker are defined as base mixtures.
- 2.7.1. **RAP**. RAP is salvaged, milled, pulverized, broken, or crushed asphalt pavement. Fractionated RAP is defined as a stockpile that contains RAP material with at least 95.0% passing the 1/2-in. sieve, before burning in the ignition oven, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 1/2-in. screen to fractionate the RAP.

Use of Contractor-owned RAP, including HMA plant waste, is permitted unless otherwise shown on the plans. Department-owned RAP stockpiles are available for the Contractor's use when the stockpile locations are shown on the plans. If Department-owned RAP is available for the Contractor's use, the Contractor may use Contractor-owned fractionated RAP and replace it with an equal quantity of Department-owned RAP. Department-owned RAP generated by required work on the Contractor is available for the Contractor's use when shown on the plans. Perform any necessary tests to ensure Contractor- or Department-owned RAP is appropriate for use. The Department will not perform any tests or assume any liability for the quality of the Department-owned RAP unless otherwise shown on the plans. The Contractor will retain ownership of RAP generated on the project when shown on the plans.

Do not use Department- or Contractor-owned RAP contaminated with dirt or other objectionable materials. Do not use Department- or Contractor-owned RAP if the decantation value exceeds 5% and the plasticity index is greater than 8. Test the stockpiled RAP for decantation in accordance with <u>Tex-406-A</u>, Part I. Determine the plasticity index in accordance with <u>Tex-106-E</u> if the decantation value exceeds 5%. The decantation and plasticity index requirements do not apply to RAP samples with asphalt removed by extraction or ignition.

Do not intermingle Contractor-owned RAP stockpiles with Department-owned RAP stockpiles. Remove unused Contractor-owned RAP material from the project site upon completion of the project. Return unused Department-owned RAP to the designated stockpile location.

	Table 4	
Max Allo	wable Amounts	of RAP ¹
	Max Allowable	
Fra	ctionated RAP (9	%)
Surface	Intermediate	Base
20.0	30.0	35.0
1. Must als	o meet the recycle	ed binder to
Fra Surface 20.0	Max Allowable actionated RAP (9 Intermediate 30.0	%) Base 35.0

total binder ratio shown in Table 5.

2.7.2. RAS is defined as processed asphalt shingle material from manufacturing of asphalt roofing shingles or from re-roofing residential structures. Post-manufactured RAS is processed manufacturer's shingle scrap byproduct. Post-consumer RAS is processed shingle scrap removed from residential structures. Use of post-manufactured RAS or post-consumer RAS (tear-offs) is not permitted in surface mixtures unless otherwise shown on the plans. RAS may be used in intermediate and base mixtures unless otherwise shown on the plans. Up to 3% RAS may be used separately or as a replacement for fractionated RAP in accordance with Table 4 and Table 5. RAS may be used separately or in conjunction with RAP. Comply with all regulatory requirements stipulated for RAS by TCEQ.

Process the RAS by ambient grinding or granulating such that 100% of the particles pass the 3/8-in. sieve when tested in accordance with <u>Tex-200-F</u>, Part I. Perform a sieve analysis on processed RAS material before extraction (or ignition) of the asphalt binder.

Add sand meeting the requirements of Table 1 and Table 2, or fine RAP, to RAS stockpiles if needed to keep the processed material workable. Any stockpile that contains RAS will be considered a RAS stockpile and be limited to no more than 3.0% of the HMA mixture in accordance with Table 4.

Certify compliance of the RAS with <u>DMS-11000</u>, "Evaluating and Using Nonhazardous Recyclable Materials Guidelines." Treat RAS as an established nonhazardous recyclable material if it has not come into contact with any hazardous materials. Use RAS from shingle sources on the MPL. Remove all materials that are not part of the shingle, such as wood, paper, metal, plastic, and felt paper, before use. Determine the deleterious content of RAS material for mixture design purposes in accordance with <u>Tex-217-F</u>, Part III. Do not use RAS if deleterious materials are more than 0.5% of the stockpiled RAS, unless otherwise approved. Submit a sample for approval before submitting the mixture design. The Department will perform the testing for deleterious material of RAS to determine specification compliance.

- 2.8. **Substitute Binders**. No binder substitution will be allowed when shown on the plans. The Contractor may use a substitute PG binder shown in Table 5 instead of the PG binder originally specified, if using recycled materials, and if the substitute PG binder and mixture made with the substitute PG binder meet the following.
 - The substitute binder meets the specification requirements for the substitute binder grade in accordance with Section 300.2.11., "Performance-Graded Binders."
 - The mixture has less than 10.0 mm of rutting on the Hamburg wheel test (<u>Tex-242-F</u>) after the number of passes required for the originally specified binder. Use of substitute PG binders may be allowed only at the discretion of the Engineer if the Hamburg wheel test results are between 10.0 mm and 12.5 mm.

Originally Specified PG	Allowable Substitute PG Binder	Allowable Substitute PG Binder	Maximum Ratio of Recycled to Total Binder (%)		
Binder	for Surface Mixes	for Intermediate and Base Mixes	Surface	Intermediate	Base
76-22	70-22	70-22	15.0	25.0	30.0
70-22	Note ²	64-22	15.0	25.0	30.0
64-22	Note ²	Note ²	15.0	25.0	30.0
76-28	70-28	70-28	15.0	25.0	30.0
70-28	Note ²	64-28	15.0	25.0	30.0
64-28	Note ²	Note ²	15.0	25.0	30.0

Table 5 Allowable PG Binders and Max Recycled Binder Ratios

 Combined recycled binder from RAP and RAS. RAS is not permitted in surface mixtures unless otherwise shown on the plans.

2. No binder substitution is allowed.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement."

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required in accordance with the Specification, the Contractor may perform other QC tests as necessary. Anytime during the project, the Engineer may perform production and placement tests as necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. **Certification**. Personnel certified by the Department-approved HMA certification program must conduct all mixture designs, sampling, and testing in accordance with Table 6. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2-certified specialist. Provide Level 1A-certified specialists at the plant during production operations. Provide Level 1B-certified specialists to conduct placement tests. Provide Level AGG101-certified specialists for aggregate testing.

Test Description	s, Test Responsibility, a Test Method	Contractor	Engineer	Level ¹
	Aggregate and Recycled		Linginicer	Level
Sampling	Tex-221-F	√	\checkmark	1A/AGG101
Dry sieve	<u>Tex-200-F</u> , Part I	\checkmark	✓	1A/AGG101
Washed sieve	Tex-200-F, Part II	✓ ✓	✓	1A/AGG101
	Tex-217-F, Part I and			
Deleterious material	Part III	\checkmark	\checkmark	AGG101
Decantation	Tex-217-F, Part II	✓	✓	AGG101
Los Angeles abrasion	Tex-410-A	_	✓	Department
Magnesium sulfate soundness	Tex-411-A	_	✓	Department
Micro-Deval abrasion	Tex-461-A	_	✓	AGG101
Crushed face count	Tex-460-A	✓	✓	AGG101
Flat and elongated particles	Tex-280-F	✓	✓	AGG101
Linear shrinkage	Tex-107-E	✓	✓	AGG101
Sand equivalent	Tex-203-F	✓	✓	AGG101
Methylene blue test	Tex-252-F	_	✓	Department
Bulk-specific gravity	Tex-201-F	✓	✓	AGG101
Organic impurities	Tex-408-A	✓	✓	AGG101
	Asphalt Binder and Tac	k Coat Sampling		
Asphalt binder sampling	Tex-500-C, Part II	✓	✓	1A/1B
Tack coat sampling	Tex-500-C, Part III	✓	✓	1A/1B
· · · · · · · · · · · · · · · · · · ·	Mix Design and V	erification		
Design and job-mix formula (JMF)			,	
changes	<u>Tex-204-F</u>	\checkmark	\checkmark	2
Mixing	Tex-205-F	✓	✓	2
Molding (Superpave gyratory		,	,	4.0
compactor [SGC])	<u>Tex-241-F</u>	~	\checkmark	1A
• • •	Tex-207-F, Part I and	✓	✓	4.6
Laboratory-molded density	Part VI	v	v	1A
Rice gravity	Tex-227-F, Part II	✓	✓	1A
Ignition oven correction factors ²	Tex-236-F, Part II	✓	✓	1A
Indirect tensile strength	Tex-226-F	✓	✓	1A
Hamburg wheel test	Tex-242-F	✓	✓	1A
Witnessing mixing of correction	Tex-236-F, Part III		\checkmark	Donortmont
factors	<u>16x-250-F</u> , Fait III	-	v	Department
Boil test	<u>Tex-530-C</u>	✓	\checkmark	1A
	Production To	esting		
Selecting production random numbers	<u>Tex-225-F</u> , Part I	-	\checkmark	1A
Mixture sampling	Tex-222-F	✓	✓	1A/1B
Molding (SGC)	<u>Tex-241-F</u>	✓	✓	1A
Leberatory melded density	Tex-207-F, Part I and	✓	✓	1.0
Laboratory-molded density	Part VI	v	v	1A
Rice gravity	Tex-227-F, Part II	✓	✓	1A
Gradation and asphalt binder content ²	Tex-236-F, Part I	✓	\checkmark	1A
Control charts	Tex-233-F	✓	✓	1A
Moisture content	Tex-212-F, Part II	✓	\checkmark	1A/AGG101
Hamburg wheel test	Tex-242-F	✓	✓	1A
Micro-Deval abrasion	Tex-461-A	_	\checkmark	AGG101
Boil test	Tex-530-C	✓	\checkmark	1A
Abson recovery	Tex-211-F	_	\checkmark	Department

Table 6
Test Methods, Test Responsibility, and Min Certification Levels

Test Description	Test Method	Contractor	Engineer	Level ¹		
Placement Testing						
Selecting placement random numbers	Tex-225-F, Part II	_	✓	1B		
Trimming roadway cores	Tex-251-F, Part I and Part II	✓	~	1A/1B		
In-place air voids	Tex-207-F, Part I and Part VI	\checkmark	~	1A		
In-place density (nuclear method)	Tex-207-F, Part III	\checkmark	_	1B		
Establish rolling pattern	Tex-207-F, Part IV	✓	_	1B		
Control charts	Tex-233-F	\checkmark	✓	1A		
Ride quality measurement	Tex-1001-S	\checkmark	✓	Note ³		
Segregation (density profile)	Tex-207-F, Part V	\checkmark	✓	1B		
Longitudinal joint density	Tex-207-F, Part VII	\checkmark	\checkmark	1B		
Thermal profile	Tex-244-F	\checkmark	_	1B		
Shear bond strength test	Tex-249-F	-	\checkmark	Department		

1. Levels 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.

2. Refer to Section 341.4.9.2.3., "Production Testing," for exceptions to using an ignition oven.

3. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when surface test Type B is specified.

4.2. **Reporting and Responsibilities**. Use Department-provided templates to record and calculate all test data, including mixture design, production and placement QC and QA, control charts, thermal profiles, segregation density profiles, and longitudinal joint density. Obtain the current version of the templates from the Department's website or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is as shown in Table 7, unless otherwise approved. The Engineer and the Contractor will immediately report to the other party any test result that requires suspension of production or placement, or a payment adjustment less than 1.000, or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

	Repo	Table 7 rting Schedule	
Description	Reported By	Reported To	To Be Reported Within
	Production	Quality Control	
Gradation ¹			
Asphalt binder content ¹			1 working day of completing of
Laboratory-molded density ²	Contractor	Engineer	1 working day of completion of the sublot
Moisture content ³			
Boil test ⁴			
	Production Q	uality Assurance	
Gradation ³			
Asphalt binder content ³			
Laboratory-molded density ¹	Fasiasa	Contractor	1 working day of completion of
Hamburg wheel test ⁵	Engineer	Contractor	the sublot
Boil test ⁴			
Binder tests ⁵			

Description	Reported By	Reported To	To Be Reported Within
•	Placement C	Quality Control	
In-place air voids ²		-	
Segregation ¹	Contractor	Fasiasas	1 working day of completion of
Longitudinal joint density ¹	Contractor	Engineer	the lot
Thermal profile ¹			
•	Placement Qu	ality Assurance	·
In-place air voids1			1 working day after receiving the trimmed cores6
Segregation ³		Contractor	
Longitudinal joint density ³	Fasiasan		1 working day of completion of the lot
Thermal profile ³	Engineer		
Aging ratio ⁵			
Shear bond strength test ⁵			5 working days after receiving the cores
Payment adjustment summary	Engineer	Contractor	2 working days of performing all required tests and receiving Contractor test data

341

1. These tests are required on every sublot.

2. Optional test. When performed on split samples, report the results as soon as they become available.

3. To be performed at the frequency shown in Table 16 or as shown on the plans.

4. When shown on the plans.

5. To be reported as soon as the results become available.

6. Two days are allowed if cores cannot be dried to constant weight within 1 day.

The Engineer will use the Department-provided template to calculate all payment adjustment factors for the lot. Sublot samples may be discarded after the Engineer and Contractor sign off on the payment adjustment summary documentation for the lot.

Use the procedures described in <u>Tex-233-F</u> to plot the results of all QC and QA testing. Update the control charts as soon as test results for each sublot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. Quality Control Plan (QCP). Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Submit a written QCP before the mandatory pre-paving meeting. Receive approval of the QCP before beginning production. Include the following items in the QCP.

4.3.1. **Project Personnel**. For project personnel, include:

- a list of individuals responsible for QC with authority to take corrective action,
- current contact information for each individual listed, and
- current copies of certification documents for individuals performing specified QC functions.

4.3.2. **Material Delivery and Storage**. For material delivery and storage, include:

- the sequence of material processing, delivery, and minimum quantities to assure continuous plant operations;
- aggregate stockpiling procedures to avoid contamination and segregation;
- frequency, type, and timing of aggregate stockpile testing to assure conformance with material requirements before mixture production; and
- procedure for monitoring the quality and variability of asphalt binder.

- 4.3.3. **Production**. For production, include:
 - loader operation procedures to avoid contamination in cold bins;
 - procedures for calibrating and controlling cold feeds;
 - procedures to eliminate debris or oversized material;
 - procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, RAP, RAS, lime, liquid antistrip, compaction aid, foaming process, and WMA);
 - procedures for reporting job control test results; and
 - procedures to avoid segregation and drain-down in the silo.
- 4.3.4. **Loading and Transporting**. For loading and transporting, include:
 - type and application method for release agents, and
 - truck-loading procedures to avoid segregation.
- 4.3.5. Placement and Compaction. For placement and compaction, include:
 - proposed agenda for mandatory pre-paving meeting, including date and location;
 - proposed paving plan (e.g., production rate, paving widths, joint offsets, and lift thicknesses);
 - type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils;
 - procedures for the transfer of mixture into the paver while avoiding physical and thermal segregation and preventing material spillage;
 - process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality;
 - paver operations (e.g., speed, operation of wings, and height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and
 - procedures to construct quality longitudinal and transverse joints.

4.4. Mixture Design.

4.4.1. **Design Requirements**. Use the dense-graded design procedure provided in <u>Tex-204-F</u>, unless otherwise shown on the plans. Design the mixture to meet the requirements shown in Tables 1, 2, 3, 4, 5, 8, 9, and 10.

Design the mixture using an SGC, and 50 gyrations as the design number of gyrations (Ndesign). Use a target laboratory-molded density of 96.0% to design the mixture; however, adjustments can be made to the Ndesign value as shown in Table 9. The Ndesign level may be reduced to at least 35 gyrations at the Contractor's discretion.

Use a Department-approved laboratory on the MPL to perform the Hamburg wheel test and provide results with the mixture design, or provide the laboratory mixture and request that the Department perform the Hamburg wheel test. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the laboratory mixture design.

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design anytime during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used;
- the binder source and optimum design asphalt content;
- asphalt binder content and aggregate gradation of RAP and RAS stockpiles;
- the Ndesign level used on the SGC;

341

- results of all applicable tests;
- the mixing and molding temperatures;
- the signature of the Level 2 person or persons who performed the design;
- the date the mixture design was performed; and
- a unique identification number for the mixture design.

Master Gra	laster Gradation Limits (% Passing by Wt. or Volume) and Void in Minera Aggregate (VMA) Requirements				
Sieve Size	DG-B Fine Base	DG-C Coarse Surface	DG-D Fine Surface	DG-F Fine Mixture	
2"	-	-	-	-	
1-1/2"	100.0 ¹	-	-	-	
1"	98.0-100.0	100.0 ¹	-	_	
3/4"	84.0-98.0	95.0-100.0	100.0 ¹	-	
1/2"	—	—	98.0-100.0	100.0 ¹	
3/8"	60.0-80.0	70.0-85.0	85.0-100.0	98.0-100.0	
#4	40.0-60.0	43.0-63.0	50.0-70.0	70.0–90.0	
#8	29.0-43.0	32.0-44.0	35.0-46.0	38.0-48.0	
#30	13.0-28.0	14.0-28.0	15.0-29.0	12.0-27.0	
#50	6.0-20.0	7.0-21.0	7.0-20.0	6.0–19.0	
#200	2.0-7.0	2.0-7.0	2.0-7.0	2.0-7.0	
	Design (VMA), % Min				

14.0

Production (Plant-Produced) (VMA), % Min

Table 8

12.5 13.5 14.5 Defined as Max sieve size. No tolerance allowed.

13.0

1.

Table 9 Laboratory Mixture Design Properties

15.0

16.0

15.5

Laboratory	sooigii i iopoilloo	
Mixture Property	Test Method	Requirement
Target laboratory-molded density, %	Tex-207-F	96.0
Design gyrations (Ndesign)	Tex-241-F	50 ¹
Indirect tensile strength (dry), psi	<u>Tex-226-F</u>	85–200 ²
Boil test ³	Tex-530-C	-

 Adjust within a range of 35–100 gyrations when shown on the plans, in accordance with the specification, or when mutually agreed between the Engineer and Contractor.

2. The Engineer may allow the indirect tensile test strength to exceed 200 psi if the corresponding Hamburg wheel rut depth is >2.5 mm and <12.5 mm.

When shown on the plans. Used to establish baseline for comparison to production results.

High-Temperature Binder Grade	Test Method	Min # of Passes at 12.5-mm ¹ Rut Depth, Tested at 50°C
PG 64 or lower		10,000 ²
PG 70	Tex-242-F	15,000 ³
PG 76 or higher		20,000

Table 10 Hamburg Wheel Test Requirements

1. The Hamburg wheel test will have a minimum rut depth of 2.5 mm.

2. May be decreased to at least 5,000 passes when shown on the plans.

3. May be decreased to at least 10,000 passes when shown on the plans.

^{4.4.2.} **Job-Mix Formula Approval**. The JMF is the combined aggregate gradation, Ndesign level, and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When WMA is used, JMF1 may be designed and submitted to the

Engineer without including the WMA additive, foaming process, or compaction aid. When WMA or a compaction aid is used, document the additive or process used and recommended rate in the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch, unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than two trial batches per design are required.

4.4.2.1. Contractor's Responsibilities.

- 4.4.2.1.1. Providing Superpave Gyratory Compactor. Provide an SGC in accordance with Item 504, "Field Office and Laboratory," and make the SGC available to the Engineer for use in molding production samples.
- 44212 Gyratory Compactor Correlation Factors. Use Tex-206-F, Part II, to perform a gyratory compactor correlation when the Engineer uses a different SGC. Apply the correlation factor to all subsequent production test results.
- 4.4.2.1.3. Submitting JMF1. Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide approximately 25 lb. of the design mixture if opting to have the Department perform the Hamburg wheel test on the laboratory mixture, and request that the Department perform the test.
- 4.4.2.1.4. **Supplying Aggregates.** Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.
- 4.4.2.1.5. Supplying Asphalt. Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.
- 4.4.2.1.6. Ignition Oven Correction Factors. Notify the Engineer before performing Tex-236-F, Part II. Allow the Engineer to witness the mixing of ignition oven correction factor sample. Determine the aggregate and asphalt correction factors from the ignition oven in accordance with Tex-236-F, Part II.

If the Engineer witnesses the mixing of the ignition oven correction factor samples, provide the Engineer with identically prepared samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for QA testing during production.

Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used, unless otherwise directed. Correction factors must be performed every 12 mo.

- 4.4.2.1.7. Boil Test. When shown on the plans, perform the test and retain the tested sample from Tex-530-C until completion of the project or as directed. Use this sample for comparison purposes during production.
- 4.4.2.1.8. Trial Batch Production. Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch. If applicable, include the WMA additive, foaming process, or compaction aid for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements shown in Tables 4, 5, and 11. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.
- 4.4.2.1.9. Trial Batch Production Equipment. Use only equipment and materials proposed for use on the project to produce the trial batch.
- 4.4.2.1.10. Trial Batch Quantity. Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.

341

- 4.4.2.1.12. **Trial Batch Sampling**. Obtain a representative sample of the trial batch and split it into three equal portions in accordance with <u>Tex-222-F</u>. Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.
- 4.4.2.1.13. **Trial Batch Testing**. Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements shown in Table 11. Ensure the trial batch mixture is also in compliance with the Hamburg wheel requirement shown in Table 10. Use a Department-approved laboratory listed on the MPL to perform the Hamburg wheel test on the trial batch mixture, or request that the Department perform the Hamburg wheel test. Provide approximately 25 lb. of the trial batch mixture if opting to have the Department perform the Hamburg wheel test, and request that the Department perform the test. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.
- 4.4.2.1.14. Development of JMF2. After the Engineer grants full approval of JMF1, evaluate the trial batch test results, determine the optimum mixture proportions, and submit as JMF2. Adjust the asphalt binder content or gradation to achieve the specified target laboratory-molded density. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the VMA requirements for production shown in Table 8. If the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform <u>Tex-226-F</u> on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi. Verify that JMF2 meets the mixture requirements shown in Table 4 and Table 5.
- 4.4.2.1.15. **Mixture Production**. Use JMF2 to produce Lot 1 in accordance with Section 341.4.9.3.1.1., "Lot 1 Placement," after receiving approval for JMF2 and a passing Hamburg wheel result on the trial batch from a laboratory listed on the MPL. Once JMF2 is approved, and without receiving the results from the Department's Hamburg wheel test on the trial batch, the Contractor may proceed to Lot 1 production at their own risk.

Notify the Engineer if electing to proceed without Hamburg wheel test results from the trial batch. Note that the Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test to be removed and replaced at the Contractor's expense.

- 4.4.2.1.16. **Development of JMF3**. Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.
- 4.4.2.1.17. **JMF Adjustments**. If JMF adjustments are necessary to achieve the specified requirements, make the adjustments before beginning a new lot. The adjusted JMF must:
 - be provided to the Engineer in writing before the start of a new lot,
 - be numbered in sequence to the previous JMF,
 - meet the mixture requirements in accordance with Table 4 and Table 5,
 - meet the master gradation limits in accordance with Table 8, and
 - be within the operational tolerances of JMF2 in accordance with Table 11.
- 4.4.2.1.18. **Requesting Referee Testing**. Use referee testing, if needed, in accordance with Section 341.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Operational Tolerances					
Description	Test Method	Allowable Difference Between JMF2 and JMF1 Target ¹	Allowable Difference Between Current JMF and JMF2 ²	Allowable Difference Between Contractor and Engineer ³	
Individual % retained on #8 sieve and larger	Tox 200 E	Must be Within	±5.04	±5.0	
Individual % retained on sieves smaller than #8 and larger than #200	<u>Tex-200-F</u> or	or	Master Gradation Limits in Table 8	±3.04	±3.0
% passing the #200 sieve	<u>Tex-236-F</u>		±2.04	±1.6	
Asphalt binder content, %	Tex-236-F	±0.5	±0.3	±0.3	
Laboratory-molded density, %		±1.0	±1.0	±1.0	
In-place air voids, %	Tex-207-F	-	-	±1.0	
Laboratory-molded bulk specific gravity		-	-	±0.020	
VMA, %, Min	<u>Tex-204-F</u>	Note ⁵	Note ⁵	-	
Theoretical maximum specific (Rice) gravity	Tex-227-F	-	-	±0.020	

	Table	11
Operational Tolerances	Operational T	olerances

1. JMF1 is the approved laboratory mixture design used for producing the trial batch. JMF2 is the approved mixture design developed from the trial batch used to produce Lot 1.

Current JMF is JMF3 or higher. JMF3 is the approved mixture design used to produce Lot 2. 2.

Contractor may request referee testing when values exceed these tolerances. 3.

- When within these tolerances, mixture production gradations may fall outside the master gradation limits; however, the % passing the 4. #200 will be considered out of tolerance when outside the master gradation limits.
- 5. Verify that Table 8 requirements are met for VMA.

4.4.2.2. Engineer's Responsibilities.

- 4.4.2.2.1. Superpave Gyratory Compactor. The Engineer will use a Department SGC, calibrated in accordance with Tex-241-F, to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location.
- 4.4.2.2.2. Conditional Approval of JMF1 and Authorizing Trial Batch. The Engineer will review and verify conformance with the following information within 2 working days of receipt:
 - the Contractor's mix design report (JMF1);
 - the Contractor-provided Hamburg wheel test results;
 - all required materials including aggregates, asphalt, additives, and recycled materials; and
 - the mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg wheel test results with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on the test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with Section 341.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after 2 working days, conditional approval of JMF1 will still be granted within 2 working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

The Contractor is authorized to produce a trial batch after the Engineer grants conditional approval of JMF1.

4.4.2.2.3. Hamburg Wheel Testing of JMF1. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the laboratory mixture, the Engineer will mold samples in accordance with Tex-242-F to verify compliance with the Hamburg wheel test requirement shown in Table 10. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the laboratory mixture design.

- Witness the mixing of ignition oven correction factor samples by the Contractor in accordance with <u>Tex-236-F</u>, Part III. The Engineer will use the identically prepared samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven in accordance with <u>Tex-236-F</u>, Part II.
- If the Engineer does not witness the mixing of ignition oven correction factor samples, the Engineer will prepare the samples to determine the aggregate and asphalt correction factors for the ignition oven in accordance with <u>Tex-236-F</u>, Part II. Notify the Contractor before performing <u>Tex-236-F</u>, Part II. Allow the Contractor to witness the Engineer performing <u>Tex-236-F</u>, Part II.

Correction factors must be performed every 12 mo. to be used for QA testing during production.

4.4.2.2.5. Testing the Trial Batch. Within 1 full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements shown in Table 11. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the trial batch mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg wheel test requirement shown in Table 10.

The Engineer will have the option to perform the following tests on the trial batch.

- Tex-226-F, to verify that the indirect tensile strength meets the requirement shown in Table 9.
- <u>Tex-530-C</u>, to retain and use for comparison purposes during production.
- 4.4.2.2.6. Full Approval of JMF1. The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements shown in Tables 8, 9, and 10. The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.
- 4.4.2.2.7. Approval of JMF2. The Engineer will approve JMF2 within 1 working day if the mixture meets the requirements shown in Table 5 and Table 8. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the VMA requirements shown in Table 8. If the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform <u>Tex-226-F</u> on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi.
- 4.4.2.2.8. Approval of Lot 1 Production. The Engineer will authorize the Contractor to proceed with JMF2 for Lot 1 production after a passing Hamburg wheel test result on the trial batch is achieved from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch.

If the Department-approved laboratory's sample from the trial batch fails the Hamburg wheel test, the Engineer will suspend production until further Hamburg wheel tests meet the specified values. The Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test be removed and replaced at the Contractor's expense.

4.4.2.2.9. Approval of JMF3 and Subsequent JMF Changes. JMF3 and subsequent JMF changes are approved if they meet the mixture requirements shown in Table 4 and Table 5, and the master gradation limits shown in Table 8, and they are within the operational tolerances of JMF2 shown in Table 11. The addition of a WMA additive to facilitate mixing or as a compaction aid does not require a new laboratory mixture design or trial batch. Current JMF changes that exceed the operational tolerances of JMF2 in accordance with Table 11 may require a new laboratory mixture design, trial batch, or both.

- 4.5. **Production Operations**. Perform a new trial batch when the plant or plant location is changed. All source changes for asphalt will require a passing Hamburg wheel test result from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch. All aggregate source changes will require a new laboratory mixture design and trial batch. Take corrective action and receive approval to proceed after any production suspension for noncompliance with the specification. Submit a new mix design and perform a new trial batch when the asphalt binder content of:
 - any RAP stockpile used in the mix is more than 0.5% higher than the value shown in the mixture design report, or
 - RAS stockpile used in the mix is more than 2.0% higher than the value shown in the mixture design report.
- 4.5.1. **Storage and Heating of Materials**. Do not heat the asphalt binder above the temperatures specified in Item 300, or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and HMA discharge temperatures (in legible and discernible increments) in accordance with Item 320, unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.
- 4.5.2. Mixing and Discharge of Materials. Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperatures shown in Table 12. The Department will not pay for or allow placement of any mixture produced above the maximum production temperatures shown in Table 12.

Table 12 Max Production Temperature		
High-Temperature Binder Grade ¹	Max Production Temperature (°F)	
PG 64	325 ²	
PG 70	335 ²	
PG 76	345 ²	
4		

_

1. The high-temperature binder grade refers to the hightemperature grade of the virgin asphalt binder used to produce the mixture.

2. The Max production temperature of WMA is 275°F.

Produce WMA within the target discharge temperature range of 215–275°F when WMA is required. Take corrective action anytime the discharge temperature of the WMA exceeds the target discharge range. The Engineer may suspend production operations if the Contractor's corrective action is not successful at controlling the production temperature within the target discharge range. Note that when WMA is produced, it may be necessary to adjust burners to ensure complete combustion such that no burner fuel residue remains in the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with <u>Tex-212-F</u>, Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck and perform the test promptly.

4.6. **Hauling Operations**. Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent listed on the MPL to coat the inside bed of the truck when necessary. Do not use diesel or any release agent not listed on the MPL.

Use equipment for hauling as defined in Section 341.4.7.3.3., "Hauling Equipment." Use other hauling equipment only when allowed.

2024 Specifications

4.7. Placement Operations. Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a handheld thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture as discharged from the truck or material transfer device (MTD) before or as the mix enters the paver. Measure the mixture temperature at a minimum frequency of one per ten trucks, or as approved. Include an approximate station number or Global Positioning System coordinates of the location where the temperature was taken on each ticket. Ensure the mixture meets the temperature requirements shown in Table 12. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide within 6 in. of lane lines, are not placed in the wheel path, or will not be covered with pavement markings, or as directed. Ensure that all finished surfaces will drain properly. Place the mixture at the rate or thickness shown on the plans. The Engineer will use the guidelines shown in Table 13 to determine the compacted lift thickness of each layer when multiple lifts are required. The thickness determined is based on the rate of 110 lb. per square yard for each inch of pavement, unless otherwise shown on the plans.

	Compacted Lift Thickness and Required Core Height				
Mixture	Compacted Lift Thickness Guidelines		Min Untrimmed Core		
	Min	Max	Height Eligible for Testing		
Туре	(in.)	(in.)	(in.)		
DG-B	2.50	5.00	1.75		
DG-C	2.00	4.00	1.50		
DG-D	1.50	3.00	1.25		
DG-F	1.25	2.50	1.25		

Table 13 Compacted Lift Thickness and Required Core Height

4.7.1. Weather Conditions.

4.7.1.1. When Using a Thermal Imaging System. Place mixture when the roadway surface is dry and the roadway surface temperature is at or above the temperatures shown in Table 14A, unless otherwise approved or as shown on the plans. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 341.4.7.3.1.2., "Thermal Imaging System."

High-Temperature Binder Grade ¹	Min Pavement Surface Temperatures (°F)	
	Subsurface Layers	Surface Layers
PG 64	35	40
PG 70	45 ²	50 ²
PG 76	45 ²	50 ²

Table 14A	
Min Pavement Surface Temperatures	

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

 The Contractor may pave at temperatures 10°F lower than these values when a chemical WMA additive is used as a compaction aid in the mixture or when using WMA.

4.7.1.2. When Not Using a Thermal Imaging System. When using a thermal camera instead of the thermal imaging system, place mixture when the roadway surface temperature is at or above the temperatures shown in

Table 14B, unless otherwise approved or as shown on the plans. Measure the roadway surface temperature using a handheld thermal camera or infrared thermometer. The Engineer may allow mixture placement to begin before the roadway surface reaches the required temperature if conditions are such that the roadway surface will reach the required temperature within 2 hr. of beginning placement operations. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer.

High-Temperature	Min Pavement Surface Temperatures Min Pavement Surface Temperatures (°F)	
Binder Grade ¹	Subsurface Layers	Surface Layers
PG 64	45	50
PG 70	55 ²	60 ²
PG 76	60 ²	60 ²

Table 14	3
Min Pavement Surface	Temperatures

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

2. The Contractor may pave at temperatures 10°F lower than these values when a chemical WMA additive is used as a compaction aid in the mixture, when using WMA, or when using a paving process with equipment that eliminates thermal segregation. In such cases, for each sublot and in the presence of the Engineer, use a handheld thermal camera operated in accordance with <u>Tex-244-F</u> to demonstrate to the satisfaction of the Engineer that the uncompacted mat has no more than 10°F of thermal segregation.

4.7.2. Tack Coat.

- 4.7.2.1. Application. Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply the tack coat to all surfaces that will come in contact with the subsequent HMA placement, unless otherwise directed. Apply adequate overlap of the tack coat in the longitudinal direction during placement of the mat to ensure bond of adjacent mats, unless otherwise directed. Allow adequate time for emulsion to break completely before placing any material. Prevent splattering of tack coat when placed adjacent to curb, gutter, and structures. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required in conformance with the manufacturer's recommendation for approved TRAIL product use, or when shown on the plans.
- 4.7.2.2. Sampling. The Engineer will obtain at least one sample of the tack coat binder per project per source in accordance with <u>Tex-500-C</u>, Part III, and test it to verify compliance with Item 300. The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample from the asphalt distributor immediately before use. Label the can with the corresponding lot and sublot numbers, producer, producer facility location, grade, district, date sampled, all applicable bills of lading (if available), and project information, including highway and control-section-job (CSJ) number. For emulsions, the Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in Item 300.
- 4.7.3. **Lay-Down Operations**. Use the placement temperatures shown in Table 15 to establish the minimum placement temperature of the mixture delivered to the paving operation.

Min Placement Temperature ^{2,3,4}		
(°F)		
260		
270		
280		

Table 15 Min Mixture Placement Temperature

- The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.
- 2. The mixture temperature must be measured using a handheld thermal camera or infrared thermometer immediately before entering MTD or paver.
- Min placement temperatures may be reduced 20°F if using a chemical WMA additive as a compaction aid, MTD with remixing capabilities, or paver hopper insert with remixing capabilities.
- 4. When using WMA, the minimum placement temperature is 215°F.
- 4.7.3.1. Thermal Profile. Use a handheld thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with <u>Tex-244-F</u>. Thermal profiles are not applicable in areas described in Section 341.4.9.3.1.4., "Miscellaneous Areas."

4.7.3.1.1. Thermal Segregation.

- 4.7.3.1.1.1. Moderate. Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F.
- 4.7.3.1.1.2. Severe. Any areas that have a temperature differential greater than 50°F.
- 4.7.3.1.2. Thermal Imaging System. Review the output results when a thermal imaging system is used, and provide the automated report described in <u>Tex-244-F</u> to the Engineer daily, unless otherwise directed. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system.

The Engineer may suspend paving operations if the Contractor cannot successfully modify the paving process to eliminate recurring severe thermal segregation. Density profiles are not required and not applicable when using a thermal imaging system.

Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots daily or as requested.

4.7.3.1.3. **Thermal Camera**. Provide the Engineer with the thermal profile of every sublot within 1 working day of the completion of each lot. When requested by the Engineer, provide the thermal images generated using the thermal camera. Report the results of each thermal profile in accordance with Section 341.4.2., "Reporting and Responsibilities." The Engineer will use a handheld thermal camera to obtain a thermal profile at least once per project.

Take immediate corrective action to eliminate recurring moderate thermal segregation when a handheld thermal camera is used.

Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet the requirements of this Section. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that contains severe thermal segregation. Evaluate areas with severe thermal segregation by performing density profiles in accordance with Section 341.4.9.3.3.3., "Segregation (Density Profile)." Remove and replace the material in any areas that have severe thermal segregation and a failing result for segregation (density profile), unless otherwise directed. The sublot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

- 4.7.3.2. **Windrow Operations**. Operate windrow pickup equipment so that when hot mix is placed in windrows, substantially all the mixture deposited on the roadbed is picked up and loaded into the paver.
- 4.7.3.3. Hauling Equipment. Use belly dump, live-bottom, or end dump trucks to haul and transfer mixture. Except for paving miscellaneous areas, end dump trucks are allowed only when used in conjunction with an MTD with remixing capability or when a thermal imaging system is used, unless otherwise approved.
- 4.7.3.4. **Screed Heaters**. Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 341.4.9.3.3.5., "Recovered Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.
- 4.8. Compaction. Compact the pavement uniformly to contain between 3.8% and 8.5% in-place air voids. Take immediate corrective action to bring the operation within 3.8% and 8.5% when the in-place air voids exceed the range of these tolerances. The Engineer will allow paving to resume when the proposed corrective action is likely to yield between 3.8% and 8.5% in-place air voids.

Obtain cores in areas placed under exempt production, as directed, at locations determined by the Engineer. The Engineer may test these cores and suspend operations or require removal and replacement if the in-place air voids are less than 2.7% or more than 9.9%. Areas defined in Section 341.4.9.3.1.4., "Miscellaneous Areas," are not subject to in-place air void determination.

Furnish the type, size, and number of rollers necessary to ensure desired compaction. Use additional rollers as required to remove any roller marks. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

Use the control strip method shown in <u>Tex-207-F</u>, Part IV, on the first day of production to establish the rolling pattern that will produce the desired in-place air voids, unless otherwise directed.

Use tamps to thoroughly compact the edges of the pavement along curbs, headers, and similar structures and in locations that will not allow thorough compaction using rollers. The Engineer may require rolling using a trench roller on widened areas, in trenches, and in other limited areas.

Complete all compaction operations using breakdown rollers before the pavement temperature drops below 180°F, unless otherwise allowed. Compaction using a pneumatic or light finish roller operated in static mode is allowed for pavement temperatures above 160°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic, unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

4.9. Acceptance Plan. Payment adjustments for the material will be in accordance with Article 341.6., "Payment."

Sample and test the hot mix on a lot and sublot basis. Suspend production if the production payment factor shown in Section 341.6.1., "Production Payment Adjustment Factors," or the placement payment factor shown in Section 341.6.2., "Placement Payment Adjustment Factors," for two consecutive lots is below 1.000. Resume production once test results or other information indicates to the satisfaction of the Engineer that the next material produced or placed will result in payment factors of at least 1.000.

4.9.1. Referee Testing. The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if a "remove and replace" condition is determined based on the Engineer's test results, or if the differences between Contractor and Engineer test results exceed the maximum allowable difference in accordance with Table 11 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within 5 working days after receiving test results and cores from the Engineer. Referee tests will be performed only on the sublot in question and only for the tests in question.

Allow 10 working days from the time the referee laboratory receives the samples for test results to be reported. The Department may require the Contractor to reimburse the Department for referee tests if more than three referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

The Materials and Tests Division will determine the laboratory-molded density based on the molded specific gravity and the maximum theoretical specific gravity of the referee sample. The in-place air voids will be determined based on the bulk specific gravity of the cores, as determined by the referee laboratory, and the Engineer's average maximum theoretical specific gravity for the lot. Except for "remove and replace" conditions, referee test results are final and will establish payment adjustment factors for the sublot in question. The Contractor may decline referee testing and accept the Engineer's test results when the placement payment adjustment factor for any sublot results in a "remove and replace" condition. Placement sublots subject to be removed and replaced will be further evaluated in accordance with Section 341.6.2.2., "Placement Sublots Subject to Removal and Replacement."

4.9.2. **Production Acceptance**.

4.9.2.1. Production Lot. A production lot consists of four equal sublots. The default quantity for Lot 1 is 1,000 ton; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 4,000 ton. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately three–four sublots are produced each day. The lot size will be between 1,000 ton and 4,000 ton. The Engineer may change the lot size before the Contractor begins any lot.

If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform <u>Tex-226-F</u> on Lot 1 to confirm the indirect tensile strength does not exceed 200 psi. Take corrective action to bring the mixture within specification compliance if the indirect tensile strength exceeds 200 psi, unless otherwise directed.

4.9.2.1.1. **Incomplete Production Lots**. If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Adjust the payment for the incomplete lot in accordance with Section 341.6.1., "Production Payment Adjustment Factors." Close all lots within 5 working days unless otherwise allowed.

4.9.2.2. **Production Sampling**.

- 4.9.2.2.1. Mixture Sampling. The Engineer will perform or witness the sampling of production sublots from trucks at the plant in accordance with <u>Tex-222-F</u> The sampler will split each sample into three equal portions in accordance with <u>Tex-200-F</u> and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" until the Department's testing is completed.
- 4.9.2.2.1.1. Random Sample. At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with <u>Tex-225-F</u>. Take one sample for each sublot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.
- 4.9.2.2.1.2. Blind Sample. For one sublot per lot, the Engineer will sample, split, and test a "blind" production sample instead of the random sample collected by the Contractor. The location of the Engineer's "blind" sample will not be disclosed to the Contractor before sampling. The Engineer's "blind" sample may be randomly selected in accordance with <u>Tex-225-F</u> for any sublot or selected at the discretion of the Engineer. The Engineer may sample and test an additional blind sample when the random sampling process does not result in obtaining a sample.

For one sublot per lot, the Contractor must obtain from the Engineer a "blind" production sample collected by the Engineer. If desired, the Contractor may witness the collection of blind samples. Test either the "blind" or

341

the random sample; however, referee testing for the sublot (if applicable) will be based on a comparison of results from the "blind" sample.

4.9.2.2.2. Asphalt Binder Sampling. The Engineer will witness the Contractor obtain a 1-qt. sample of the asphalt binder for each lot of mixture produced. The Contractor will notify the Engineer when the sampling will occur. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with <u>Tex-500-C</u>, Part II. Label the can with the corresponding lot and sublot numbers, producer name, producer facility, grade, District, date sampled, all applicable bills of lading (if available), and project information, including highway and CSJ number. The Engineer will retain these samples for 1 yr. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder with the Contractor.

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to the Materials and Tests Division to verify compliance with Item 300, and will retain the other split sample for 1 yr.

4.9.2.3. **Production Testing**. The Contractor and Engineer must perform production tests shown in Table 16. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances shown in Table 11 for all sublots.

Take immediate corrective action if the Engineer's laboratory-molded density on any sublot is less than 95.0% or greater than 97.0% to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

The Engineer may allow alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that <u>Tex-236-F</u>, Part I does not yield reliable results. Provide evidence that results from <u>Tex-236-F</u>, Part I are not reliable before requesting permission to use an alternate method unless otherwise directed. Use the applicable test procedure as directed if an alternate test method is allowed.

Table 16 Placement Testing Fr	equency	
Test Method	Min Contractor Testing Frequency	Min Engineer Testing Frequency
<u>Tex-200-F</u> or <u>Tex-236-F</u>	1 per sublot	1 per 12 sublots ¹

1 per sublot²

1 per sublot³

When directed

1 per sublot

1 per sublot²

_

-

_

1 per lot

Production and P

Tex-207-F

Tex-204-F

Tex-207-F, Part V

Tex-207-F, Part VII

Tex-212-F, Part II

Tex-227-F <u>Tex-236-F</u>

<u>Tex-244-F</u>

<u>Tex-242-F</u>

Tex-217-F, Part III

Tex-500-C, Part II

Tex-500-C, Part III

Tex-530-C

Tex-249-F

For production defined in Section 341.4.9.4., "Exempt Production," the Engineer will perform one test per day if 1 100 ton or more is produced. For exempt production, no testing is required when < 100 ton is produced.

2. To be performed in the presence of the Engineer when not using the thermal imaging system, unless otherwise approved.

3. To be performed in the presence of the Engineer.

Description

Individual % retained on #8 sieve and larger Individual % retained on sieves smaller than #8

Laboratory-molded bulk specific gravity

Theoretical maximum specific (Rice) gravity

Asphalt binder sampling and testing^{4,5}

Tack coat sampling and testing

Shear bond strength test7

and larger than #200 % passing #200 sieve Laboratory-molded density

In-place air voids

Moisture content

Segregation (density profile)

Longitudinal joint density

Asphalt binder content Thermal profile

Hamburg wheel test

Deleterious in RAS⁴

Boil test⁶

VMA

- Testing performed by the Materials and Tests Division or designated laboratory. 4
- 5. Sampling performed by the Contractor. The Engineer will witness sampling and retain the samples for 1 yr.

When shown on the plans. 6.

- Testing performed by the Materials and Tests Division or District for informational purposes on a sample 7. obtained by the Contractor within the first four lots of the project.
- 4.9.2.4. **Operational Tolerances**. Control the production process within the operational tolerances shown in Table 11. When production is suspended, the Engineer will allow production to resume when test results or other information indicates the next mixture produced will be within the operational tolerances.
- 4.9.2.4.1. Gradation. Suspend operation and take corrective action if any aggregate is retained on the maximum sieve size shown in Table 8. A sublot is defined as out of tolerance if either the Engineer's or the Contractor's test results are out of operational tolerance. Suspend production when test results for gradation exceed the operational tolerances shown in Table 11 for three consecutive sublots on the same sieve or four consecutive sublots on any sieve, unless otherwise directed. The consecutive sublots may be from more than one lot.
- 4.9.2.4.2. Asphalt Binder Content. A sublot is defined as out of operational tolerance if either the Engineer's or the Contractor's test results exceed the values shown in Table 11. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that is out of operational tolerance for asphalt binder content. Suspend production and shipment of the mixture if the Engineer's or the Contractor's asphalt binder content deviates from the current JMF by more than 0.5% for any sublot.
- 4.9.2.4.3. VMAs. The Engineer will determine the VMA for every sublot. For sublots when the Engineer does not determine asphalt binder content, the Engineer will use the asphalt binder content results from QC testing performed by the Contractor to determine VMA.

1 per sublot¹

1 per project

1 per project

1 per project

1 per sublot¹

1 per lot¹

1 per project

341

Take immediate corrective action if the VMA value for any sublot is less than the minimum VMA requirement for production shown in Table 8. Suspend production and shipment of the mixture if the Engineer's VMA results on two consecutive sublots are below the minimum VMA requirement for production shown in Table 8. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that does not meet the minimum VMA requirement for production shown in Table 8 based on the Engineer's VMA determination.

Suspend production and shipment of the mixture if the Engineer's VMA result is more than 0.5% below the minimum VMA requirement for production shown in Table 8. In addition to suspending production, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment.

4.9.2.4.4. **Hamburg Wheel Test**. The Engineer may perform a Hamburg wheel test on plant-produced mixture anytime during production. Suspend production until further Hamburg wheel tests meet the specified values when the production samples fail the Hamburg wheel test criteria shown in Table 10. The Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test to be removed and replaced at the Contractor's expense.

If the Department-approved laboratory's Hamburg wheel test on plant-produced mixture results in a "remove and replace" condition, the Contractor may request that the Materials and Tests Division determine the final disposition of the material in question by re-testing the failing material.

4.9.2.5. Individual Loads of Hot Mix. The Engineer may reject individual truckloads of hot mix. When a load of hot mix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances shown in Table 11, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.3. Placement Acceptance.

- 4.9.3.1. **Placement Lot**. A placement lot consists of four placement sublots. A placement sublot consists of the area placed during a production sublot.
- 4.9.3.1.1. Lot 1 Placement. Placement payment adjustments greater than 1.000 for Lot 1 will be in accordance with Section 341.6.2., "Placement Payment Adjustment Factors"; however, no placement adjustment less than 1.000 will be assessed for any sublot placed in Lot 1 when the in-place air voids are greater than or equal to 2.7% and less than or equal to 9.9%. Remove and replace any sublot with in-place air voids less than 2.7% or greater than 9.9%.
- 4.9.3.1.2. Incomplete Placement Lots. An incomplete placement lot consists of the area placed as described in Section 341.4.9.2.1.1., "Incomplete Production Lots," excluding areas defined in Section 341.4.9.3.1.4., "Miscellaneous Areas." Placement sampling is required if the random sample plan for production resulted in a sample being obtained from an incomplete production sublot.
- 4.9.3.1.3. Shoulders, Ramps, Etc. Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are subject to in-place air void determination and payment adjustments unless shown on the plans as not eligible for in-place air void determination. Intersections may be considered miscellaneous areas when determined by the Engineer.
- 4.9.3.1.4. Miscellaneous Areas. Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations, such as temporary detours, driveways, mailbox turnouts, crossovers, gores, spot level-up areas, pavement repair sections less than 300 ft., and other similar areas. Temporary detours are subject to in-place air void determination when shown on the plans. Miscellaneous areas also include level-ups and thin overlays when the layer thickness shown on the plans is less than the minimum untrimmed core height eligible for testing in accordance with Table 13. The specified layer thickness is based

on the rate of 110 lb. per square yard for each inch of pavement unless another rate is shown on the plans. When "Level Up" is listed as part of the bid item description, a payment adjustment factor of 1.000 will be assigned for all placement sublots as described in Article 341.6., "Payment." Miscellaneous areas are not eligible for random placement sampling locations. Compact miscellaneous areas in accordance with Section 341.4.8., "Compaction." Miscellaneous areas are not subject to in-place air void determination, thermal profiles testing, segregation (density profiles), or longitudinal joint density evaluations.

4.9.3.2. Placement Sampling. The Engineer will select random numbers for all placement sublots at the beginning of the project. The Engineer will provide the Contractor with the placement random numbers only immediately after the sublot is completed. Mark the roadway location at the completion of each sublot and record the station number. Determine one random sample location for each placement sublot in accordance with <u>Tex-225-F</u>. Adjust the random sample location by no more than necessary to achieve a 2-ft. clearance if the location is within 2 ft. of a joint or pavement edge.

Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are always eligible for selection as a random sample location; however, if a random sample location falls on one of these areas and the area is shown on the plans as not subject to in-place air void determination, cores will not be taken for the sublot and a 1.000 pay factor will be assigned to that sublot.

Provide the equipment and means to obtain and trim roadway cores onsite. Onsite is defined as in close proximity to where the cores are taken. Obtain the cores within 1 working day of the time the placement sublot is completed, unless otherwise approved. Obtain two 6-in. diameter cores side-by-side from within 1 ft. of the random location provided for the placement sublot. Mark the cores for identification, measure and record the untrimmed core height, and provide the information to the Engineer. The Engineer will witness the coring operation and measurement of the core thickness. Visually inspect each core and verify that the current paving layer is bonded to the underlying layer. Take corrective action if an adequate bond does not exist between the current and underlying layer to ensure that an adequate bond will be achieved during subsequent placement operations.

Trim the cores immediately after obtaining them from the roadway in accordance with Tex-251-F if the core heights meet the minimum untrimmed value in accordance with Table 13. Trim the cores onsite in the presence of the Engineer. Use a permanent marker or paint pen to record the lot and sublot numbers on each core, as well as the designation as Core A or Core B. The Engineer may require additional information to be marked on the core and may choose to sign or initial the core. The Engineer will take custody of the cores immediately after witnessing the trimming of the cores and will retain custody of the cores until the Department's testing is completed. Before turning the trimmed cores over to the Engineer, the Contractor may wrap the trimmed cores or secure them in a manner that will reduce the risk of possible damage occurring during transport by the Engineer. After testing, the Engineer will return the cores to the Contractor.

The Engineer may have the cores transported back to the Department's laboratory at the HMA plant via the Contractor's haul truck or other designated vehicle. In such cases where the cores will be out of the Engineer's possession during transport, the Engineer will use Department-provided security bags and the Protocol for Roadway Core Custody located on the Department's website to provide a secure means and process that protect the integrity of the cores during transport.

Decide whether to include the pair of cores in the air void determination for that sublot if the core height before trimming is less than the minimum untrimmed value shown in Table 13. Trim the cores in accordance with <u>Tex-251-F</u> before delivering to the Engineer if electing to have the cores included in the air void determination. If electing to not have the cores included in air void determination, inform the Engineer of the decision, and deliver untrimmed cores to the Engineer. The placement pay factor for the sublot will be 1.000 if cores will not be included in air void determination.

Instead of the Contractor trimming the cores onsite immediately after coring, the Engineer and the Contractor may mutually agree to have the trimming operations performed at an alternate location, such as a field laboratory or other similar location. In such cases, the Engineer will take possession of the cores immediately

after they are obtained from the roadway and will retain custody of the cores until testing is completed. Either the Department or Contractor representative may perform trimming of the cores. The Engineer will witness all trimming operations in cases where the Contractor representative performs the trimming operation.

Dry the core holes and tack the sides and bottom immediately after obtaining the cores. Fill the hole with the same type of mixture and properly compact the mixture. Repair core holes using other methods when approved.

- 4.9.3.3. **Placement Testing**. Perform placement tests in accordance with Table 16. After the Engineer returns the cores, the Contractor may test the cores to verify the Engineer's test results for in-place air voids. The allowable differences between the Contractor's and Engineer's test results are shown in Table 11.
- 4.9.3.3.1. In-Place Air Voids. The Engineer will measure in-place air voids in accordance with <u>Tex-207-F</u> and <u>Tex-227-F</u>. Before drying to a constant weight, cores may be pre-dried using a CoreDry or similar vacuum device to remove excess moisture. The Engineer will average the values obtained for all sublots in the production lot to determine the theoretical maximum specific gravity. The Engineer will use the average air void content for in-place air voids.

The Engineer will use the vacuum method to seal the core if required in accordance with $\underline{\text{Tex-207-F}}$. The Engineer will use the test results from the unsealed core to determine the placement payment adjustment factor if the sealed core yields a higher specific gravity than the unsealed core. After determining the in-place air void content, the Engineer will return the cores and provide test results to the Contractor.

- 4.9.3.3.2. Informational Shear Bond Strength Testing. The Engineer will select one random sublot within the first four lots of the project for shear bond strength testing. Obtain full-depth cores in accordance with <u>Tex-249-F</u> unless the HMA is being placed directly on concrete pavement. Label the cores with lot and sublot numbers and provide to the Engineer. Inspector must use pertinent Department form to document the CSJ number, producer of the tack coat, mix type, and shot rate. The Engineer will ship the cores to the Materials and Tests Division or District laboratory for shear bond strength testing. Results from these tests will not be used for specification compliance.
- 4.9.3.3.3. Segregation (Density Profile). Test for segregation using density profiles in accordance with <u>Tex-207-F</u>, Part V. Density profiles are not required and are not applicable when using a thermal imaging system. Density profiles are not applicable in areas described in Section 341.4.9.3.1.4., "Miscellaneous Areas."

Perform at least one density profile per sublot. Perform additional density profiles when any of the following conditions occur, unless otherwise approved:

- areas that are identified by either the Contractor or the Engineer with severe thermal segregation,
- any visibly segregated areas that exist,
- the paver stops due to lack of material being delivered to the paving operations and the temperature of the uncompacted mat before the initial breakdown rolling is less than the temperatures shown in Table 17.

Min Uncompacted Mat Temperature Requiring Segregation Profile ¹			
High-Temperature Binder Grade ²	Min Temperature of Uncompacted Mat Allowed Before Initial Breakdown Rolling ^{3,4,5} (°F)		
PG 64	<250		
PG 70	<260		
PG 76	<270		

Table 17							
Min Uncompacted Mat Temperature Requiring Segregation Profile ¹							
		-	4				

 Applicable only to paver stops that occur due to lack of material being delivered to the paving operations and when not using a thermal imaging system.

- The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.
- The surface of the uncompacted mat must be measured using a handheld thermal camera or infrared thermometer.
- Min uncompacted mat temperature requiring a segregation profile may be reduced 20°F if using a chemical WMA additive as a compaction aid, MTD with remixing capabilities, or paver hopper insert with remixing capabilities.
- When using WMA, the Min uncompacted mat temperature requiring a segregation profile is 215°F.

Provide the Engineer with the density profile of every sublot in the lot within 1 working day of the completion of each lot. Report the results of each density profile in accordance with Section 341.4.2., "Reporting and Responsibilities."

The density profile is considered failing if it exceeds the tolerances shown in Table 18. When a thermal imaging system is not used, the Engineer will measure the density profile at least once per project. The Engineer's density profile results will be used when available. The Engineer may require the Contractor to remove and replace the area in question if the area fails the density profile and has surface irregularities as defined in Section 341.4.9.3.3.6., "Irregularities." The sublot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

Investigate density profile failures and take corrective actions during production and placement to eliminate the segregation. Suspend production if two consecutive density profiles fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Table 18					
Segregation (Density Profile) Acceptance Criteria					
Mixture Type	Max Allowable Density Range (highest to lowest, pcf)	Max Allowable Density Range (average to lowest, pcf)			
DG-B	8.0	5.0			
DG-C, DG-D, and DG-F	6.0	3.0			

4.9.3.3.4. Longitudinal Joint Density.

- 4.9.3.3.4.1. **Informational Tests**. Perform joint density evaluations while establishing the rolling pattern and verify that the joint density is no more than 3.0 pcf below the density taken at or near the center of the mat. Adjust the rolling pattern, if needed, to achieve the desired joint density. Perform additional joint density evaluations, at least once per sublot, unless otherwise directed.
- 4.9.3.3.4.2. Record Tests. Perform a joint density evaluation for each sublot at each pavement edge that is or will become a longitudinal joint. Joint density evaluations are not applicable in areas described in Section 341.4.9.3.1.4., "Miscellaneous Areas." Determine the joint density in accordance with <u>Tex-207-F</u>, Part VII. Record the joint density information and submit results on Department forms to the Engineer. The evaluation is considered failing if the joint density is more than 3.0 pcf below the density taken at the core random sample location and

the correlated joint density is less than 90.0%. The Engineer will make independent joint density verification at least once per project and may make independent joint density verifications at the random sample locations. The Engineer's joint density test results will be used when available.

Provide the Engineer with the joint density of every sublot in the lot within 1 working day of the completion of each lot. Report the results of each joint density in accordance with Section 341.4.2., "Reporting and Responsibilities."

Investigate joint density failures and take corrective actions during production and placement to improve the joint density. Suspend production if the evaluations on two consecutive sublots fail, unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

- 4.9.3.3.5. Recovered Asphalt Dynamic Shear Rheometer (DSR). The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high-temperature PG of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with Tex-211-F.
- 4.9.3.3.6. Irregularities. Identify and correct irregularities, including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities. The Engineer may also require the Contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than 1 day while the Contractor is taking appropriate corrective action.

- 4.9.4. **Exempt Production**. The mixture may be deemed as exempt production when mutually agreed upon between the Engineer and the Contractor, or when shown on the plans. Exempt production may be used for the following conditions.
 - Anticipated daily production is less than 500 ton.
 - Total production for the project is less than 5,000 ton.
 - Pavement repair sections are equal to or greater than 300 ft. For pavement repair sections less than 300 ft., refer to Section 341.4.9.3.1.4., "Miscellaneous Areas."

Exempt production is not eligible for referee testing. For exempt production, the Contractor is relieved of all production and placement QC and QA sampling and testing requirements, except for coring operations when required by the Engineer. When mutually agreed upon between the Engineer and the Contractor, production sampling will be allowed at the point of delivery. When 100 ton or more per day is produced, the Engineer must perform acceptance tests for production and placement in accordance with Table 16. If the specification requirements listed below are met, the production and placement pay factors are 1.000:

- produce, haul, place, and compact the mixture in compliance with the specification and as directed;
- control mixture production to yield a laboratory-molded density that is within ±1.0% of the target laboratory-molded density as tested by the Engineer;
- compact the mixture in accordance with Section 341.4.8., "Compaction;"

- all other specification requirements.
- 4.9.5. **Ride Quality**. Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

- 5.1. **Dense-Graded HMA**. Hot mix will be measured by the ton of composite hot mix, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment."
- 5.2. **Tack Coat**. Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measured by the gallon applied.

The Engineer may allow the use of a metering device to determine asphalt volume used and application rate if the device is accurate within 1.5% of the strapped volume.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Section 341.5.1., "Dense-Graded HMA," will be paid for at the unit price bid for "Dense-Graded Hot-Mix Asphalt" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 341.5.2., "Tack Coat," will be paid for at the unit price bid for "Tack Coat" of the tack coat provided. These prices are full compensation for materials, placement, equipment, labor, tools, and incidentals. Payment adjustments will be applied as determined in accordance with this Item; however, a payment adjustment factor of 1.000 will be assigned for all placement sublots for level-ups only when "Level Up" is listed as part of the bid item description. A payment adjustment factor of 1.000 will be assigned to all production and placement sublots when "Exempt" is listed as part of the bid item description, and all testing requirements are met.

Payment for each sublot, including applicable payment adjustments greater than 1.000, will be paid only for sublots when the Contractor supplies the Engineer with the required documentation for production and placement QC and QA, thermal profiles, segregation density profiles, and longitudinal joint densities in accordance with Section 341.4.2., "Reporting and Responsibilities." When a thermal imaging system is used, documentation is not required for segregation density profiles on individual sublots; however, the thermal imaging system automated reports described in <u>Tex-244-F</u> are required.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585.

6.1. **Production Payment Adjustment Factors**. The production payment adjustment factor is based on the laboratory-molded density using the Engineer's test results. The bulk specific gravities of the samples from each sublot will be divided by the Engineer's maximum theoretical specific gravity for the sublot. The individual sample densities for the sublot will be averaged to determine the production payment adjustment factor in accordance with Table 19 for each sublot, using the deviation from the target laboratory-molded

density in accordance with Table 9. The production payment adjustment factor for completed lots will be the average of the payment adjustment factors for the four sublots sampled within that lot.

Production Payment Adjustment Factors for Laboratory-Molded Density ¹			
Absolute Deviation from Target Laboratory-Molded Density	Production Payment Adjustment Factor (Target Laboratory-Molded Density)		
0.0	1.050		
0.1	1.050		
0.2	1.050		
0.3	1.044		
0.4	1.038		
0.5	1.031		
0.6	1.025		
0.7	1.019		
0.8	1.013		
0.9	1.006		
1.0	1.000		
1.1	0.965		
1.2	0.930		
1.3	0.895		
1.4	0.860		
1.5	0.825		
1.6	0.790		
1.7	0.755		
1.8	0.720		
>1.8	Remove and replace		

Table 19

1. If the Engineer's laboratory-molded density on any sublot is <95.0% or >97.0%, take immediate corrective action to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

6.1.1. Payment for Incomplete Production Lots. Production payment adjustments for incomplete lots, described under Section 341.4.9.2.1.1., "Incomplete Production Lots," will be calculated using the average production payment factors from all sublots sampled.

> A production payment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any samples within the first sublot.

- 6.1.2. Production Sublots Subject to Removal and Replacement. If after referee testing the laboratory-molded density for any sublot results in a "remove and replace" condition as shown in Table 19, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment. The Engineer may also accept the sublot in accordance with Section 5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.
- 6.2. Placement Payment Adjustment Factors. The placement payment adjustment factor is based on in-place air voids using the Engineer's test results. The bulk specific gravities of the cores from each sublot will be divided by the Engineer's average maximum theoretical specific gravity for the lot. The individual core densities for the sublot will be averaged to determine the placement payment adjustment factor in accordance with Table 20 for each sublot that requires in-place air void measurement. A placement payment adjustment factor of 1.000 will be assigned to the entire sublot when the random sample location falls in an area shown on the plans as not subject to in-place air void determination. A placement payment adjustment factor of 1.000 will be assigned to quantities placed in areas described in Section 341.4.9.3.1.4., "Miscellaneous Areas." The placement payment adjustment factor for completed lots will be the average of the placement payment adjustment factors for up to four sublots within that lot.

Placement Payment Adjustment Factors for In-Place Air Voids				
In-Place	Placement Pay	In-Place	Placement Payment	
Air Voids	Adjustment Factor	Air Voids	Adjustment Factor	
<2.7	Remove and replace	6.4	1.042	
2.7	0.710	6.5	1.040	
2.8	0.740	6.6	1.038	
2.9	0.770	6.7	1.036	
3.0	0.800	6.8	1.034	
3.1	0.830	6.9	1.032	
3.2	0.860	7.0	1.030	
3.3	0.890	7.1	1.028	
3.4	0.920	7.2	1.026	
3.5	0.950	7.3	1.024	
3.6	0.980	7.4	1.022	
3.7	0.998	7.5	1.020	
3.8	1.002	7.6	1.018	
3.9	1.006	7.7	1.016	
4.0	1.010	7.8	1.014	
4.1	1.014	7.9	1.012	
4.2	1.018	8.0	1.010	
4.3	1.022	8.1	1.008	
4.4	1.026	8.2	1.006	
4.5	1.030	8.3	1.004	
4.6	1.034	8.4	1.002	
4.7	1.038	8.5	1.000	
4.8	1.042	8.6	0.998	
4.9	1.046	8.7	0.996	
5.0	1.050	8.8	0.994	
5.1	1.050	8.9	0.992	
5.2	1.050	9.0	0.990	
5.3	1.050	9.1	0.960	
5.4	1.050	9.2	0.930	
5.5	1.050	9.3	0.900	
5.6	1.050	9.4	0.870	
5.7	1.050	9.5	0.840	
5.8	1.050	9.6	0.810	
5.9	1.050	9.7	0.780	
6.0	1.050	9.8	0.750	
6.1	1.048	9.9	0.720	
6.2	1.046	>9.9	Remove and replace	
6.3	1.044	-	-	

Table 20 Placement Payment Adjustment Factors for In-Place Air Voids

6.2.1. **Payment for Incomplete Placement Lots**. Payment adjustments for incomplete placement lots described under Section 341.4.9.3.1.2., "Incomplete Placement Lots," will be calculated using the average of the placement payment factors from all sublots sampled and sublots where the random location falls in an area shown on the plans as not eligible for in-place air void determination.

If the random sampling plan results in production samples, but not in placement samples, the random core location and placement adjustment factor for the sublot will be determined by applying the placement random number to the length of the sublot placed.

If the random sampling plan results in placement samples, but not in production samples, no placement adjustment factor will apply for that sublot placed.

A placement payment adjustment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any production samples.

2024 Specifications

6.2.2. Placement Sublots Subject to Removal and Replacement. If after referee testing the placement payment adjustment factor for any sublot results in a "remove and replace" condition as shown in Table 20, the Engineer will choose the location of two cores to be taken within 3 ft. of the original failing core location. The Contractor must obtain the cores in the presence of the Engineer. The Engineer will take immediate possession of the untrimmed cores and submit the untrimmed cores to the Materials and Tests Division, where they will be trimmed, if necessary, and tested for bulk specific gravity within 10 working days of receipt.

The bulk specific gravity of each core from each sublot will be divided by the Engineer's average maximum theoretical specific gravity for the lot. The individual core densities for the sublot will be averaged to determine the new payment adjustment factor of the sublot in question. If the new payment adjustment factor is 0.720 or greater, the new payment adjustment factor will apply to that sublot. If the new payment adjustment factor is 0.720, no payment will be made for the sublot. Remove and replace the failing sublot, or the Engineer may allow the sublot to be left in place without payment. The Engineer may also accept the sublot in accordance with Section 5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.

6.3. **Total Adjusted Pay (TAP) Calculation**. TAP will be based on the applicable payment adjustment factors for production and placement for each lot.

TAP = (A+B)/2

where:

A = Bid price × production lot quantity × average payment adjustment factor for the production lot
 B = Bid price × placement lot quantity × average payment adjustment factor for the placement lot + (bid price × quantity placed in miscellaneous areas × 1.000)

Production lot quantity = Quantity actually placed - quantity left in place without payment

Placement lot quantity = Quantity actually placed - quantity left in place without payment - quantity placed in miscellaneous areas

Item 342 Permeable Friction Course

342

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) surface course composed of a compacted permeable mixture of aggregate, asphalt binder, and additives mixed hot in a mixing plant.

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met and document all material source changes when the Contractor makes a source or formulation change. The Engineer may sample and test project materials anytime during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. Aggregate. Furnish aggregates from sources that conform to the requirements shown in Table 1 and this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse aggregate. Do not use intermediate or fine aggregate in permeable friction course (PFC) mixtures. Supply aggregates that meet the definitions in <u>Tex-100-E</u> for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests in accordance with Table 1. Document all test results in the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis in accordance with Tex-200-F, Part II.
- 2.1.1. **Coarse Aggregate**. Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for HMA listed in the BRSQC. Rated values for surface treatment do not apply to coarse aggregate sources used in HMA.

For sources not listed in the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance;
- allow 30 calendar days for the Engineer to sample, test, and report results;
- use only when tested and approved; and
- once approved, do not add additional material to the stockpile unless otherwise allowed by the Engineer.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements apply only to aggregates used on the surface of travel lanes, unless otherwise shown on the plans. The SAC for sources in the Department's Aggregate Quality Monitoring Program (AQMP) (<u>Tex-499-A</u>) is listed in the BRSQC.

2024 Specifications

- 2.1.1.1. Blending Class A and Class B Aggregates. To prevent crushing of the Class B aggregate when blending, Class B aggregate may be blended with a Class A aggregate to meet requirements for Class A materials if:
 - the Department's BRSQC rated source soundness magnesium (RSSM) rating for the Class B aggregate is less than the Class A aggregate, or
 - the RSSM rating for the Class B aggregate is no more than 10% of the RSSM rating for the Class A aggregate.

When blending Class A and Class B aggregates to meet a Class A requirement, ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source, unless otherwise shown on the plans. Blend by volume if the bulk-specific gravities of the Class A and Class B aggregates differ by more than 0.300. Class B aggregate may be disallowed when shown on the plans.

The Engineer may perform tests anytime during production, when the Contractor blends Class A and Class B aggregates to meet a Class A requirement. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks to verify the percent of Class A aggregate retained on the No. 4 sieve. The Engineer will use the gradations supplied by the Contractor in the mixture design report as an input for the template. A failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2. **Micro-Deval Abrasion**. The Engineer will perform at least one Micro-Deval abrasion test in accordance with <u>Tex-461-A</u> for each coarse aggregate source used in the mixture design that has an RSSM loss value greater than 10 as listed in the BRSQC, unless otherwise directed. The Engineer will perform testing before the start of production and may perform additional testing anytime during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula.

Mg_{est.} = (RSSM)(MD_{act.}/RSMD)

where:

 $Mg_{est.}$ = magnesium sulfate soundness loss RSSM = rated source soundness magnesium $MD_{act.}$ = actual Micro-Deval percent loss RSMD = rated source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Materials and Tests Division, and additional testing may be required before granting approval.

obaroc riggrogato duality requiremento					
Property	Test Method	Requirement			
SAC	Tex-499-A (AQMP)	As shown on the plans			
Deleterious material, %, Max	<u>Tex-217-F</u> , Part I	1.0			
Decantation, %, Max	Tex-217-F, Part II	1.5			
Micro-Deval abrasion, %	<u>Tex-461-A</u>	Note 1			
Los Angeles abrasion, %, Max	Tex-410-A	30			
Magnesium sulfate soundness, 5 cycles, %, Max	Tex-411-A	20			
Crushed face count, ² %, Min	Tex-460-A, Part I	95			
Flat and elongated particles @ 5:1, %, Max	Tex-280-F	10			

Table 1 Coarse Aggregate Quality Requirements

342

1. Used to estimate the magnesium sulfate soundness loss in accordance with Section 342.2.1.1.2., "Micro-Deval Abrasion."

2. Only applies to crushed gravel.

- 2.2. **Baghouse Fines**. Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.
- 2.3. **Asphalt Binder**. Furnish performance-graded (PG) asphalt binder with a high-temperature grade of PG 76 and low-temperature grade as shown on the plans, in accordance with Section 300.2.11., "Performance-Graded Binders."
- 2.4. **Tack Coat.** Furnish CSS-1H, SS-1H, emulsified bonding layer, or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300, "Asphalts, Oils, and Emulsions." Specialized tack coat materials on the MPL for *Tracking Resistant Asphalt Interlayer (TRAIL)* will be allowed or required when shown on the plans. The Engineer may suspend paving operations until there is adequate coverage. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required in conformance with the manufacturer's recommendation for approved TRAIL products on the MPL.
- 2.5. Additives. Use the type of additive specified when shown on the plans. Use the rate of additive specified in conformance with the manufacturer's recommendation. Additives that facilitate mixing and compaction, or improve the quality of the mixture, are allowed when approved. Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.
- 2.5.1. **Fibers**. Provide cellulose or mineral fibers when PG binder is specified. Submit written certification to the Engineer that the fibers proposed for use meet the requirements of <u>DMS-9204</u>, "Fiber Additives for Bituminous Mixtures." Fibers may be pre-blended into the binder at the asphalt supply terminal unless otherwise shown on the plans.
- 2.5.2. Lime Mineral Filler. Add lime as mineral filler at a rate of 1.0% by weight of the total dry aggregate in accordance with Item 301, "Asphalt Antistripping Agents," unless otherwise shown on the plans or waived by the Engineer based on Hamburg wheel test results. Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.
- 2.5.3. Lime and Liquid Antistripping Agent. When lime or a liquid antistripping agent is used, add in accordance with Item 301. Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum. When the plans require lime to be added as an antistripping agent, lime added as mineral filler will count toward the total quantity of lime specified.
- 2.5.4. **Compaction Aid**. Compaction aid is defined as a Department-approved chemical warm-mix additive, specified as "chemical additive" on the MPL, that is used to facilitate mixing and compaction of HMA at a discharge temperature greater than 275°F.

Compaction aid is allowed for use on all projects. Compaction aid is required when shown on the plans or as required in Section 342.4.7.1., "Weather Conditions."

Warm-mix foaming processes, denoted as "foaming process" on the MPL, may be used to facilitate mixing and compaction of HMA at target discharge temperatures greater than 275°F; however, warm-mix foaming processes are not defined as a compaction aid.

2.6. Recycled Materials. Recycled materials are not allowed for use.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement." Provide a means to calibrate the asphalt mass flow meter onsite when a meter is used.

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required in accordance with the Specification, the Contractor may perform other QC tests as necessary. Anytime during the project, the Engineer may perform production and placement tests as necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. **Certification**. Personnel certified by the Department-approved HMA certification program must conduct all mixture designs, sampling, and testing in accordance with Table 2. Supply the Engineer with a list of certified personnel and copies of their current certificates before production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2 certified specialist. Provide Level 1A-certified specialists at the plant during production operations. Provide Level 1B-certified specialists to conduct placement tests. Provide Level AGG101-certified specialists for aggregate testing.

4.2.

	st Methods, Test Responsibilit		ation Levels	
Test Description	Test Method	Contractor	Engineer	Level ¹
	Aggregate			L
Sampling	<u>Tex-221-F</u>	\checkmark	✓	1A/AGG101
Dry sieve	<u>Tex-200-F</u> , Part I	✓	✓	1A/AGG101
Washed sieve	<u>Tex-200-F</u> , Part II	\checkmark	\checkmark	1A/AGG101
Deleterious material	Tex-217-F, Part I and Part III	\checkmark	\checkmark	AGG101
Decantation	Tex-217-F, Part II	\checkmark	\checkmark	AGG101
Los Angeles abrasion	<u>Tex-410-A</u>	-	\checkmark	Department
Magnesium sulfate soundness	<u>Tex-411-A</u>	-	✓	Department
Micro-Deval abrasion	<u>Tex-461-A</u>	-	✓	AGG101
Crushed face count	Tex-460-A	✓	✓	AGG101
Flat and elongated particles	Tex-280-F	\checkmark	✓	AGG101
* .	Asphalt Binder and T	ack Coat Sampling		
Asphalt binder sampling	Tex-500-C, Part II	√	✓	1A/1B
Tack coat sampling	Tex-500-C, Part III	✓	✓	1A/1B
r 	Mix Design and	Verification		
Design and job-mix formula				•
(JMF) changes	<u>Tex-204-F</u>	\checkmark	\checkmark	2
Mixing	Tex-205-F	✓	✓	2
Molding (Superpave gyratory		,		
compactor [SGC])	<u>Tex-241-F</u>	\checkmark	✓	1A
Laboratory-molded density	Tex-207-F, Parts I, VI, and VIII	✓	✓	1A
Rice gravity	Tex-227-F, Part II	 ✓	· · · · · · · · · · · · · · · · · · ·	1A
Ignition oven correction factors ²	Tex-236-F, Part II	 ✓	· · · · · · · · · · · · · · · · · · ·	1A
Drain-down	Tex-235-F	✓	· ·	1A
Hamburg wheel test	Tex-242-F	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1A
Witnessing mixing of correction		•		
factors	<u>Tex-236-F</u> , Part III	-	✓	Department
Boil test	Tex-530-C	✓	✓	1A
Cantabro loss	Tex-245-F	 ✓	· · · · · · · · · · · · · · · · · · ·	1A
Cantable 1033	Production	•		IA
Control charts	Tex-233-F	resting √	\checkmark	1A
Mixture sampling	Tex-222-F	 ✓	· · · · · · · · · · · · · · · · · · ·	1A/1B
Gradation and asphalt binder	<u>16X-222-1</u>	•	v	IA/ID
content ²	Tex-236-F, Part I	\checkmark	\checkmark	1A
Moisture content	Tex-212-F, Part II	 ✓	✓ ✓	1A/AGG101
	<u>Tex-242-F</u>		✓ ✓	14/400101
Hamburg wheel test Overlay test		v	✓ ✓	
Micro-Deval abrasion	<u>Tex-248-F</u>	-	▼ ✓	Department AGG101
	<u>Tex-461-A</u>	-		
Drain-down	Tex-235-F		✓ ✓	1A
Boil test	<u>Tex-530-C</u>	\checkmark	✓ ✓	1A Demonstration
Abson recovery	<u>Tex-211-F</u>		\checkmark	Department
	Placement			
Control charts	<u>Tex-233-F</u>	<u>√</u>	✓ ✓	1A
Ride quality measurement	<u>Tex-1001-S</u>	✓	✓	Note ³
Thermal profile	<u>Tex-244-F</u>	✓	-	1B
Water flow test	<u>Tex-246-F</u>	\checkmark	✓	1B
Shear bond strength test	<u>Tex-249-F</u>	-	\checkmark	Department

Table 2

Levels 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program. 1.

Refer to Section 342.4.9.2.3., "Production Testing," for exceptions to using an ignition oven.

2. 3. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when surface test Type B is specified.

Reporting and Responsibilities. Use Department-provided templates to record and calculate all test data, including mixture design, production and placement QC and QA, control charts, and thermal profiles. Obtain the current version of the templates from the Department's website or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is as shown in Table 3, unless

otherwise approved. The Engineer and the Contractor will immediately report to the other party any test result that requires suspension of production or placement or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

342

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

		able 3 ng Schedule			
Description	Reported By	Reported To	To Be Reported Within		
•	Production	Quality Control	· ·		
Gradation ¹					
Asphalt binder content ¹					
Laboratory-molded density ¹	Contractor	Engineer	1 working day of completion of		
Moisture content ²	Contractor	Ligineei	the sublot		
Drain-down ¹					
Boil test ³					
	Production 0	Quality Assurance			
Gradation ²					
Asphalt binder content ²					
Laboratory-molded density ²					
Hamburg wheel test ⁴	Engineer	Contractor	1 working day of completion of		
Overlay test ⁴	LIIGIIIEEI	Contractor	the sublot		
Boil test ³					
Drain-down ²					
Binder tests ⁴					
	Placement	Quality Control			
Thermal profile ¹	Contractor	Engineer	1 working day of completion of		
Water flow ¹	Contractor	Liigineei	the lot		
Placement Quality Assurance					
Thermal profile ²			1 working day of completion of		
Aging ratio ⁴			the lot		
Water flow ²	Engineer	Contractor			
Shear bond strength test ⁴			5 working days after receiving the cores		

1. These tests are required on every sublot.

2. To be performed at the frequency specified shown in Table 9 or as shown on the plans.

3. When shown on the plans.

4. To be reported as soon as the results become available.

Use the procedures described in <u>Tex-233-F</u> to plot the results of all QC and QA testing. Update the control charts as soon as test results for each sublot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. Quality Control Plan (QCP). Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Submit a written QCP before the mandatory pre-paving meeting. Receive approval of the QCP before beginning production. Include the following items in the QCP.

- 4.3.1. **Project Personnel**. For project personnel, include:
 - a list of individuals responsible for QC with authority to take corrective action,
 - current contact information for each individual listed, and
 - current copies of certification documents for individuals performing specified QC functions.

2024 Specification	ns	34
4.3.2.	 Material Delivery and Storage. For material delivery and storage, include: the sequence of material processing, delivery, and minimum quantities to assure continuous plant operations; aggregate stockpiling procedures to avoid contamination and segregation; frequency, type, and timing of aggregate stockpile testing to assure conformance with material requirements before mixture production; and procedure for monitoring the quality and variability of asphalt binder. 	
4.3.3.	 Production. For production, include: loader operation procedures to avoid contamination in cold bins; procedures for calibrating and controlling cold feeds; procedures to eliminate debris or oversized material; procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, lime, liquid antistrip, compaction aid, foaming process, and fibers); procedures for reporting job control test results; and procedures to avoid segregation and drain-down in the silo. 	
4.3.4.	 Loading and Transporting. For loading and transporting, include: type and application method for release agents, and truck-loading procedures to avoid segregation. 	
4.3.5.	 Placement and Compaction. For placement and compaction, include: proposed agenda for mandatory pre-paving meeting, including date and location; proposed paving plan (e.g., production rate, paving widths, joint offsets, and lift thicknesses); type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils; procedures for the transfer of mixture into the paver while avoiding physical and thermal segregation and preventing material spillage; process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality; paver operations (e.g., speed, operation of wings, and height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and procedures to construct quality longitudinal and transverse joints. 	on
4.4.	Mixture Design.	
4.4.1.	Design Requirements . Use the PFC design procedure provided in <u>Tex-204-F</u> , unless otherwise shown the plans. Design the mixture to meet the requirements shown in Tables 1, 4, 5, and 6. Design the mixtur using an SGC and 50 gyrations as the design number of gyrations (Ndesign). The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a ne mixture design anytime during the project. The Engineer will verify and approve all mixture designs (JMF before the Contractor can begin production.	re w

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used;
- the binder source and optimum design asphalt content;
- results of all applicable tests;
- the mixing and molding temperatures;

- the signature of the Level 2 person or persons who performed the design;
- the date the mixture design was performed; and
- a unique identification number for the mixture design.

l able 4				
Master Gradation Limits (% Passing by Wt. or				
	Volume)			
	PG 76	i Mixtures		
Sieve Size	Fine	Coarse		
	(PFC-F)	(PFC-C)		
3/4"	_	100.0 ¹		
1/2"	100.0 ¹	80.0-100.0		
3/8"	95.0-100.0	35.0-60.0		
#4	20.0-55.0	1.0-20.0		
#8	1.0-10.0	1.0–10.0		
#200	10-40	1 0-4 0		

Table A

1. Defined as Max sieve size. No tolerance allowed.

		PG 76 Mixtures		
Mix Property	Test Method	Fine (PFC-F) Requirements	Coarse (PFC-C) Requirements	
Design gyrations (Ndesign)	Tex-241-F	50	50	
Laboratory-molded density, %	<u>Tex-207-F</u>	78.0 Max	82.0 Max	
Asphalt binder content, %	-	6.0-7.0	6.0-7.0	
Hamburg wheel test ^{1,2} , passes @ 12.5-mm rut depth tested @ 50°C	<u>Tex-242-F</u>	10,000 Min	Note ³	
Drain-down, %	<u>Tex-235-F</u>	0.10 Max	0.10 Max	
Fiber content, % by wt. of total PG 76 mixture	Calculated	0.20-0.50	0.20–0.50	
Lime content, % by wt. of total aggregate	Calculated	1.04	1.04	
Boil test ⁵	<u>Tex-530-C</u>	_	_	
Cantabro loss, %	Tex-245-F	20.0 Max	20.0 Max	

Table 5 Laboratory Mixture Design Properties

1. Mold test specimens to Ndesign at the optimum asphalt binder content.

2. May be decreased when shown on the plans.

3. No specification value is required unless otherwise shown on the plans.

4. Unless otherwise shown on the plans or waived by the Engineer based on

Hamburg wheel results.

5. When shown on the plans. Used to establish baseline for comparison to production results.

4.4.2.

Job-Mix Formula Approval. The JMF is the combined aggregate gradation, Ndesign level, and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When a compaction aid or foaming process is used, JMF1 may be designed and submitted to the Engineer without including the compaction aid or foaming process. When a compaction aid or foaming process used and recommended rate in the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch, unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than two trial batches per design are required.

2024 Specifications

- 4.4.2.1.1. **Providing Superpave Gyratory Compactor** Provide an SGC in accordance with Item 504, "Field Office and Laboratory," and make the SGC available to the Engineer for use in molding production samples.
- 4.4.2.1.2. **Gyratory Compactor Correlation Factors**. Use <u>Tex-206-F</u>, Part II, to perform a gyratory compactor correlation when the Engineer uses a different SGC. Apply the correlation factor to all subsequent production test results.
- 4.4.2.1.3. **Submitting JMF1**. Furnish a mix design report (JMF1) with representative samples of all component materials, and request approval to produce the trial batch. Provide an additional 25 lb. of the design mixture if opting to have the Department perform the Hamburg wheel test on the laboratory mixture when required in accordance with Table 5, and request that the Department perform the test.
- 4.4.2.1.4. **Supplying Aggregates**. Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.
- 4.4.2.1.5. **Supplying Asphalt**. Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.
- 4.4.2.1.6. **Ignition Oven Correction Factors**. Notify the Engineer before performing <u>Tex-236-F</u>, Part II. Allow the Engineer to witness the mixing of ignition oven correction factor sample. Determine the aggregate and asphalt correction factors from the ignition oven in accordance with <u>Tex-236-F</u>, Part II. Note that the asphalt content correction factor takes into account the percent fibers in the mixture so that the fibers are excluded from the binder content determination.

If the Engineer witnesses the mixing of the ignition oven correction factors, provide the Engineer with identically prepared samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for QA testing during production.

Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used, unless otherwise directed. Correction factors must be performed every 12 mo.

- 4.4.2.1.7. **Boil Test**. When shown on the plans, perform the test and retain the tested sample from <u>Tex-530-C</u> until completion of the project or as directed. Use this sample for comparison purposes during production.
- 4.4.2.1.8. **Trial Batch Production**. Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch. If applicable, include the compaction aid or foaming process, for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements shown in Table 6. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.
- 4.4.2.1.9. **Trial Batch Production Equipment**. Use only equipment and materials proposed for use on the project to produce the trial batch. Provide documentation to verify the calibration or accuracy of the asphalt mass flow meter to measure the binder content. Verify that asphalt mass flow meter meets the 0.4% accuracy requirement, when applicable, in accordance with Item 520, "Weighing and Measuring Equipment." The Engineer may require that the accuracy of the mass flow meter be verified based on quantities used.
- 4.4.2.1.10. **Trial Batch Quantity**. Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.
- 4.4.2.1.11. **Number of Trial Batches**. Produce trial batches as necessary to obtain a mixture that meets the specification requirements.

2024 Specifications

- 4.4.2.1.12. **Trial Batch Sampling**. Obtain a representative sample of the trial batch and split it into three equal portions in accordance with <u>Tex-222-F</u>. Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.
- 4.4.2.1.13. **Trial Batch Testing**. Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements shown in Table 6. Ensure the trial batch mixture is also in compliance with Table 5. Use a Department-approved laboratory listed on the MPL to perform the Hamburg wheel test on the trial batch mixture, or request that the Department perform the Hamburg wheel test. Provide approximately 25 lb. of the trial batch mixture if opting to have the Department perform the Hamburg wheel test, if applicable, and request that the Department perform the test. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.
- 4.4.2.1.14. **Development of JMF2**. After the Engineer grants full approval of JMF1, evaluate the trial batch test results, determine the target mixture proportions, and submit as JMF2. The mixture produced using JMF2 must meet the requirements shown in Table 4 and Table 5. Verify that JMF2 meets the operational tolerances shown in Table 6.
- 4.4.2.1.15. **Mixture Production**. Use JMF2 to produce Lot 1 after receiving approval for JMF2 and, if pertinent, a passing Hamburg wheel test result on the trial batch from a laboratory listed on the MPL. Once JMF2 is approved, and without receiving the results from the Department's Hamburg wheel test on the trial batch, the Contractor may proceed to Lot 1 production at their own risk.
- 4.4.2.1.16. **Development of JMF3**. Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.
- 4.4.2.1.17. **JMF Adjustments**. If JMF adjustments are necessary to achieve the specified requirements, make the adjustments before beginning a new lot. The adjusted JMF must:
 - be provided to the Engineer in writing before the start of a new lot,
 - be numbered in sequence to the previous JMF,
 - meet the master gradation limits in accordance with Table 4,
 - meet the binder content limits in accordance with Table 5, and
 - be within the operational tolerances of JMF2 listed in accordance with Table 6.
- 4.4.2.1.18. **Requesting Referee Testing**. Use referee testing, if needed, in accordance with Section 342.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Table 6 Operational Tolerances					
Description	Test Method	Allowable Difference between JMF2 and JMF1 Target ¹	Allowable Difference Between Current JMF and JMF2 ²	Allowable Difference Between Contractor and Engineer ³	
Individual % retained on sieves larger than #200	Tex-200-F or	Must be within master gradation limits in	±3.0 ⁴	±5.0	
% passing the #200 sieve	<u>Tex-236-F</u>	Table 4		±2.0	
Laboratory-molded density, %	Tex-207-F, Part VIII	±1.0	±1.0	±1.0	
Asphalt binder content,5,6 %	<u>Tex-236-F</u> , Part I	±0.3 ⁷	±0.3 ⁷	±0.3	

1. JMF1 is the approved laboratory mixture design used for producing the trial batch. JMF2 is the approved mixture design developed from the trial batch used to produce Lot 1.

2. Current JMF is JMF3 or higher. JMF3 is the approved mixture design used to produce Lot 2.

3. Contractor may request referee testing when values exceed these tolerances.

4. Aggregate gradation is not allowed to be outside the limits shown in Table 4.

5. Ensure the binder content determination excludes fibers.

6. May be obtained from asphalt mass flow meter readouts as determined by the Engineer.

7. Binder content is not allowed to be outside the limits shown in Table 5.

4.4.2.2. Engineer's Responsibilities.

- 4.4.2.2.1. **Superpave Gyratory Compactor**. The Engineer will use a Department SGC, calibrated in accordance with <u>Tex-241-F</u>, to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location.
- 4.4.2.2.2. Conditional Approval of JMF1 and Authorizing Trial Batch. The Engineer will review and verify conformance with the following information within 2 working days of receipt.:
 - the Contractor's mix design report (JMF1);
 - the Contractor-provided Hamburg wheel test results, if applicable;
 - all required materials including aggregates, asphalt, and additives; and
 - the mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg wheel test results with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on the test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with Section 342.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after 2 working days, conditional approval of JMF1 will still be granted within 2 working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

The Contractor is authorized to produce a trial batch after the Engineer grants conditional approval of JMF1.

- 4.4.2.2.3. Hamburg Wheel Testing of JMF1. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the laboratory mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg wheel test requirement shown in Table 5. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the laboratory mixture design.
- 4.4.2.2.4. **Ignition Oven Correction Factors**. The Engineer will determine ignition oven correction factors by one of the following options.
 - Witness the mixing of ignition oven correction factor samples by the Contractor in accordance with <u>Tex-236-F</u>, Part III. The Engineer will use the identically prepared samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven in accordance with <u>Tex-236-F</u>, Part II.
 - If the Engineer does not witness the mixing of ignition oven correction factor samples, the Engineer will prepare the samples to determine the aggregate and asphalt correction factors for the ignition oven in accordance <u>Tex-236-F</u>, Part II. Notify the Contractor before performing <u>Tex-236-F</u>, Part II. Allow the Contractor to witness the Engineer performing <u>Tex-236-F</u>, Part II.

Correction factors must be performed every 12 mo. to be used for QA testing during production.

4.4.2.2.5. **Testing the Trial Batch**. Within 1 full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements shown Table 6. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the trial batch mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg wheel test requirement shown in Table 5.

The Engineer will have the option to perform <u>Tex-530-C</u> on the trial batch when shown on the plans. These results may be retained and used for comparison purposes during production.

- 4.4.2.2.6. **Full Approval of JMF1**. The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements shown in Tables 4, 5, and 6. The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.
- 4.4.2.2.7. **Approval of JMF2**. The Engineer will approve JMF2 within 1 working day if the mixture meets the requirements shown in Tables 4, 5, and 6.
- 4.4.2.2.8. **Approval of Lot 1 Production**. The Engineer will authorize the Contractor to proceed with JMF2 for Lot 1 production after a passing Hamburg wheel test result on the trial batch is achieved from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch.
- 4.4.2.2.9. **Approval of JMF3 and Subsequent JMF Changes**. JMF3 and subsequent JMF changes are approved if they meet the master gradation limits shown in Table 4, the asphalt binder content shown in Table 5, and they are within the operational tolerances of JMF2 shown in Table 6. The addition of a warm-mix asphalt (WMA) additive to facilitate mixing or as a compaction aid does not require a new laboratory mixture design or trial batch. Current JMF changes that exceed the operational tolerances of JMF2 shown in Table 6 may require a new laboratory mixture design, trial batch, or both.
- 4.4.2.2.10. Binder Content Adjustments. For JMF2 and above, the Engineer may require the Contractor to adjust the target binder content by no more than 0.3% from the current JMF.
- 4.5. **Production Operations**. Perform a new trial batch when the plant or plant location is changed. All source changes for asphalt will require a passing Hamburg wheel test result from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch. All aggregate source changes will require a new laboratory mixture design and trial batch. Take corrective action and receive approval to proceed after any production suspension for noncompliance with the specification.
- 4.5.1. **Storage and Heating of Materials**. Do not heat the asphalt binder above the temperatures specified in Item 300, or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and HMA discharge temperatures (in legible and discernible increments) in accordance with Item 320, unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.
- 4.5.2. **Mixing and Discharge of Materials**. Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperatures shown in Table 7. The Department will not pay for or allow placement of any mixture produced above the maximum production temperatures shown in Table 7.

Max Production Temperature				
High-Temperature Max Production Temperature Binder Grade1 (°F)				
PG 76	345			

Table 7

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with <u>Tex-212-F</u>, Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck and perform the test promptly.

4.6. **Hauling Operations**. Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent listed on the MPL to coat the inside bed of the truck when necessary. Do not use diesel or any release agent not listed on the MPL.

Use equipment for hauling as defined in Section 342.4.7.3.3., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. Placement Operations. Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a handheld thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture immediately before the mix enters the material transfer device (MTD) or paver. Measure the mixture temperature at a minimum frequency of one per ten trucks, or as approved. Include an approximate station number or Global Positioning System coordinates of the location where the temperature was taken on each ticket. Ensure the mixture meets the temperature requirement shown in Table 7. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot-mix by at least 6-in. Place mixture so that longitudinal joints on the surface course coincide within 6-in. of lane lines, are not placed in the wheel path, or will not be covered with pavement markings, or as directed. Ensure that all finished surfaces will drain properly.

4.7.1. Weather Conditions.

4.7.1.1. When Using a Thermal Imaging System. Place mixture when the roadway surface is dry and the roadway surface temperature is at or above 60°F, unless otherwise approved or as shown on the plans. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 342.4.7.3.1.2., "Thermal Imaging System."

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.1.2. When Not Using a Thermal Imaging System. When using a thermal camera instead of the thermal imaging system, place mixture when the roadway surface temperature is at or above 70°F, unless otherwise approved or as shown on the plans. Measure the roadway surface temperature using a handheld thermal camera or infrared thermometer. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. The Engineer may restrict the Contractor from paving if the air temperature is 60°F and falling.

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.2. **Tack Coat**.

4.7.2.1. Application. Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 gal. and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply adequate overlap of the tack coat in the longitudinal direction during placement of the mat to ensure bond of adjacent PFC mats, unless otherwise directed. Unless otherwise directed, avoid tacking the vertical faces of adjacent PFC mats in the longitudinal direction to avoid restricting lateral drainage. Apply

tack coat to all transverse joints. Allow adequate time for emulsion to break completely before placing any material. The Engineer may suspend paving operations until there is adequate coverage. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required in conformance with the manufacturer's recommendation for approved TRAIL product use on the Department's MPL.

- 4.7.2.2. Sampling. The Engineer will obtain at least one sample of the tack coat binder per project per source in accordance with Tex-500-C, Part III, and test it to verify compliance in accordance with Item 300. The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample from the asphalt distributor immediately before use. Label the can with the corresponding lot and sublot numbers; producer name; producer facility location; grade; district; date sampled; all applicable bills of lading (if available); and project information, including highway and control-section-job (CSJ) number. For emulsions, the Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in accordance with Item 300.
- 4.7.3. Lay-Down Operations. Use the placement temperature in accordance with Table 8 to establish the minimum placement temperature of the mixture delivered to the paving operation.

Min Mixture Placement Temperature				
High-Temperature Min Placement Temperature ^{2,3}				
Binder Grade ¹	(°F)			
PG 76	280			
1. The high-temperature binder grade refers to the				

	Table 8
Min Mixture	e Placement Temperature

- high-temperature grade of the virgin asphalt binder used to produce the mixture. 2. The mixture temperature must be measured using a handheld
- thermal camera or infrared thermometer immediately before entering MTD or paver.
- 3. Min placement temperatures may be reduced 20°F if using a chemical WMA additive as a compaction aid, MTD with remixing capabilities, or paver hopper insert with remixing capabilities.
- 4.7.3.1. Thermal Profile. Use a handheld thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with Tex-244-F. Thermal profiles are not applicable in areas described in Section 342.4.9.3.2., "Miscellaneous Areas."
- 4.7.3.1.1. Thermal Segregation.
- 4.7.3.1.1.1. Moderate. Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F.
- 4.7.3.1.1.2. Severe. Any areas that have a temperature differential greater than 50°F.
- 4.7.3.1.2. Thermal Imaging System. Review the output results when a thermal imaging system is used, and provide the automated report described in Tex-244-F to the Engineer daily unless otherwise directed. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system.

The Engineer may suspend paying operations if the Contractor cannot successfully modify the paying process to eliminate recurring severe thermal segregation. Density profiles are not required and not applicable when using a thermal imaging system.

Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots daily or as requested.

2024 Specifications

4.7.3.1.3. **Thermal Camera**. Provide the Engineer with the thermal profile of every sublot within 1 working day of the completion of each lot. When requested by the Engineer, provide the electronic files generated using the thermal camera. Report the results of each thermal profile in accordance with Section 342.4.2., "Reporting and Responsibilities." The Engineer will use a handheld thermal camera to obtain a thermal profile at least once per project.

Take immediate corrective action to eliminate recurring moderate thermal segregation when a handheld thermal camera is used.

Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet the requirements of this Section.

- 4.7.3.2. **Windrow Operations**. Operate windrow pickup equipment so that when hot mix is placed in windrows, substantially all the mixture deposited on the roadbed is picked up and loaded into the paver.
- 4.7.3.3. Hauling Equipment. Use belly dumps, live-bottom, or end dump trucks to haul and transfer mixture. Except for paving miscellaneous areas, end dump trucks are allowed only when used in conjunction with an MTD with remixing capability, or when a thermal imaging system is used, unless otherwise approved.
- 4.7.3.4. **Screed Heaters**. Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 342.4.9.3.3., "Recovered Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.
- 4.8. Compaction. Roll the freshly placed mixture using as many steel-wheeled rollers as necessary, operated in static mode, to seat the mixture without excessive breakage of the aggregate and to provide a smooth surface and uniform texture. Do not use pneumatic rollers. Thoroughly moisten the roller drums with a soap-and-water solution to prevent adhesion. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

Use <u>Tex-246-F</u> to test and verify that the compacted mixture meets the water flow requirements. Measure the water flow once per sublot at locations directed by the Engineer. The water flow rate must be less than 20 sec. Investigate the cause of the water flow rate test failures and take corrective actions during production and placement to ensure the water flow rate is less than 20 sec. Suspend production if two consecutive water flow rate tests fail, unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Complete all compaction operations before the pavement temperature drops below 180°F, unless otherwise allowed. The Engineer may allow compaction with a light finish roller operated in static mode for pavement temperatures below 180°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic, unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

- 4.9. Acceptance Plan. Sample and test the hot mix on a lot-and-sublot basis.
- 4.9.1. **Referee Testing**. The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if a "remove and replace" condition is determined based on the Engineer's test results, or if the differences between Contractor and Engineer test results exceed the maximum allowable difference in accordance with Table 6 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within 5 working days after receiving test results from the Engineer. Referee tests will be performed only on the sublot in question and only for the particular tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to be reported. The Department may require the Contractor to reimburse the Department for referee tests if

more than three referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

4.9.2. **Production Acceptance**.

- 4.9.2.1. **Production Lot.** A production lot consists of four equal sublots. The default quantity for Lot 1 is 1,000 ton; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 2,000 ton. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately three–four sublots are produced each day. The lot size will be between 1,000 ton and 4,000 ton. The Engineer may change the lot size before the Contractor begins any lot.
- 4.9.2.1.1. **Incomplete Production Lots**. If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Close all lots within 5 working days unless otherwise allowed.

4.9.2.2. Production Sampling.

- 4.9.2.2.1. Mixture Sampling. The Engineer will perform or witness the sampling of production sublots from trucks at the plant in accordance with <u>Tex-222-F</u>. The sampler will split each sample into three equal portions in accordance with <u>Tex-200-F</u> and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain custody of the samples labeled "Engineer" and "Referee." the Engineer will the Department's testing is completed.
- 4.9.2.2.1.1. **Random Sample**. At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with <u>Tex-225-F</u>. Take one sample for each sublot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.
- 4.9.2.2.1.2. Blind Sample. For one sublot per lot, the Engineer will sample, split, and test a "blind" production sample instead of the random sample collected by the Contractor. The location of the Engineer's "blind" sample will not be disclosed to the Contractor before sampling. The Engineer's "blind" sample may be randomly selected in accordance with <u>Tex-225-F</u> for any sublot or selected at the discretion of the Engineer. The Engineer may sample and test an additional blind sample when the random sampling process does not result in obtaining a sample.

For one sublot per lot, the Contractor must obtain from the Engineer a "blind" production sample collected by the Engineer. If desired, the Contractor may witness the collection of blind samples. Test either the "blind" or the random sample; however, referee testing for the sublot (if applicable) will be based on a comparison of results from the "blind" sample.

- 4.9.2.2.2. Informational Hamburg Wheel and Overlay Testing. Select one random sublot from Lot 2 or higher for Hamburg wheel and overlay testing during the first week of production. Obtain and provide the Engineer with approximately 90 lb. of mixture, sampled in accordance with <u>Tex-222-F</u>, in sealed containers, boxes, or bags labeled with the CSJ number, mixture type, lot number, and sublot number. The Engineer will ship the mixture to the Materials and Tests Division for Hamburg wheel and overlay testing. Results from these tests will not be used for specification compliance.
- 4.9.2.2.3. Asphalt Binder Sampling. The Engineer will witness the Contractor obtain a 1-qt. sample of the asphalt binder for each lot of mixture produced. The Contractor will notify the Engineer when the sampling will occur. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with <u>Tex-500-C</u>, Part II. Label the can with the corresponding lot and sublot numbers, producer name, producer facility, grade, District, date sampled, all applicable bills of lading (if available), and project information, including highway and CSJ number. The Engineer will retain these samples for 1 yr. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample and upon request of the Contractor, the Engineer will split a sample of the asphalt binder with the Contractor.

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to the Materials and Tests Division to verify compliance with Item 300, and will retain the other split sample for 1 yr.

4.9.2.3. **Production Testing**. The Contractor and Engineer must perform production tests shown in Table 9. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances shown in Table 6 for all sublots.

Anytime during production, the Engineer may require the Contractor to verify the following based on quantities used:

- lime content (within ±0.1% of JMF) when PG binder is specified, and
- fiber content (within ±0.03% of JMF) when PG binder is specified.

The Engineer may allow alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that <u>Tex-236-F</u>, Part I does not yield reliable results. Provide evidence that results from <u>Tex-236-F</u>, Part I are not reliable before requesting permission to use an alternate method unless otherwise directed. Use the applicable test procedure as directed if an alternate test method is allowed.

Description	Test Method	Min Contractor Testing Frequency	Min Engineer Testing Frequency
Individual % retained on #200 sieve and larger	<u>Tex-200-F</u> or	1 per sublot	1 per 12 sublots
% passing the #200 sieve	<u>Tex-236-F</u>		
Laboratory-molded density	Tex-207-F, Part VIII	1 per sublot	1 per lot
Asphalt binder content ¹	<u>Tex-236-F</u> , Part I	1 per sublot ²	1 per lot
Drain-down	<u>Tex-235-F</u>	1 per sublot	1 per 12 sublots
Boil test ³	<u>Tex-530-C</u>	1 per project	1 per project
Moisture content	Tex-212-F, Part II	When directed	1 per project
Cantabro loss	<u>Tex-245-F</u>	_	1 per project
Hamburg wheel test	<u>Tex-242-F</u>	-	1 per project ⁴
Overlay test	<u>Tex-248-F</u>	-	1 per project⁵
Water flow test ⁶	<u>Tex-246-F</u>	1 per sublot	
Asphalt binder sampling ⁷	<u>Tex-500-C</u> , Part II	-	1 per project
Tack coat sampling and testing	<u>Tex-500-C</u> , Part III	_	
Thermal profile	<u>Tex-244-F</u>	1 per sublot ⁸	1 per project
Shear bond strength test	<u>Tex-249-F</u>	_	1 per project⁵

Table 9 Production and Placement Testing Frequency

1. Ensure the binder content determination excludes fibers.

2. May be obtained from asphalt mass flow meter readouts as determined by the Engineer.

3. When shown on the plans.

- 4. When required according to mixture type and requirements shown in Table 5. When no specification value is required, testing will be performed by the Materials and Tests Division for informational purposes only.
- 5. Testing performed by the Materials and Tests Division for informational purposes only.
- 6. To be performed in the presence of the Engineer, unless otherwise directed.
- 7. Sampling performed by the Contractor. The Engineer will witness sampling and retain the samples for 1 yr.
- 8. To be performed in the presence of the Engineer when not using the thermal imaging system, unless otherwise approved.
- 4.9.2.4. **Operational Tolerances**. Control the production process within the operational tolerances shown in Table 6. Suspend production and placement operations when production or placement test results exceed the tolerances in accordance with Table 6 unless otherwise allowed. When production is suspended, the Engineer will allow production to resume when test results or other information specify the next mixture produced will be within the operational tolerances.

2024 Specifications

4.9.2.5. Individual Loads of Hot Mix. The Engineer may reject individual truckloads of hot mix. When a load of hot mix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances in accordance with Table 6, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.3. Placement Acceptance.

- 4.9.3.1. **Placement Lot**. A placement lot consists of four placement sublots. A placement sublot consists of the area placed during a production sublot.
- 4.9.3.2. **Miscellaneous Areas**. Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations, such as mailbox turnouts, crossovers, gores, pavement repair sections less than 300 ft., and other similar areas. The specified layer thickness is based on the rate of 90 lb. per square yard for each inch of pavement unless another rate is shown on the plans. Miscellaneous areas are not subject to thermal profiles or water flow testing.
- 4.9.3.3. **Recovered Asphalt Dynamic Shear Rheometer (DSR)**. The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T315 at the specified high-temperature PG of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with <u>Tex-211-F</u>.
- 4.9.3.4. **Irregularities**. Identify and correct irregularities, including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities. The Engineer may also require the Contractor to remove and replace (at the Contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than 1 day while the Contractor is taking appropriate corrective action.

- 4.9.3.5. Informational Shear Bond Strength Testing. The Engineer will select one random sublot within the first four lots of the project for shear bond strength testing. Obtain full-depth cores in accordance with <u>Tex-249-F</u>, unless the HMA is being placed directly on concrete pavement. Label the cores with lot and sublot numbers and provide to the Engineer. The Inspector must use the pertinent Department form to document the CSJ number, producer of the tack coat, mix type, and shot rate. The Engineer will ship the cores to the Materials and Tests Division or District laboratory for shear bond strength testing. Results from these tests will not be used for specification compliance.
- 4.9.4. **Ride Quality**. Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

5.1. **PFC HMA**. PFC hot mix will be measured by the ton of composite hot mix, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520.

2024 Specifications

5.2. **Tack Coat**. Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measured by the gallon applied.

The Engineer may allow the use of a metering device to determine asphalt volume used and application rate if the device is accurate to within 1.5% of the strapped volume.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Section 342.5.1., "PFC HMA," will be paid for at the unit price bid for "PFC Mix" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, removing pavement marking, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 342.5.2., "Tack Coat," will be paid for at the unit price bid for "Tack Coat" of the tack coat provided. These prices are full compensation for preparation, removing pavement marking, materials, placement, equipment, labor, tools, and incidentals.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585.

Item 344 Superpave Mixtures

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) pavement layer composed of a compacted, Superpave (SP) mixture of aggregate, asphalt binder, and additives mixed hot in a mixing plant. Payment adjustments will apply to HMA in accordance with this Specification unless the HMA is deemed exempt in accordance with Section 344.4.9.4., "Exempt Production."

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met and document all material source changes when the Contractor makes a source or formulation change. The Engineer may sample and test project materials anytime during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. Aggregate. Furnish aggregates from sources that conform to the requirements shown in Table 1 and this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse, intermediate, or fine aggregate. Aggregate from reclaimed asphalt pavement (RAP) is not required to meet Table 1 requirements unless otherwise shown on the plans. Supply aggregates that meet the definitions in <u>Tex-100-E</u> for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests shown in Table 1. Document all test results in the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis in accordance with <u>Tex-200-F</u>, Part II.
- 2.1.1. **Coarse Aggregate**. Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for HMA listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in HMA.

For sources not listed in the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance;
- allow 30 calendar days for the Engineer to sample, test, and report results;
- use only when tested and approved; and
- once approved, do not add additional material to the stockpile unless otherwise allowed by the Engineer.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements apply only to aggregates used on the surface of travel lanes, unless otherwise shown on the plans. The SAC for sources in the Department's *Aggregate Quality Monitoring Program* (AQMP) (<u>Tex-499-A</u>) is listed in the BRSQC.

2.1.1.1. Blending Class A and Class B Aggregates. Class B aggregate meeting all other requirements shown in Table 1 may be blended with a Class A aggregate to meet requirements for Class A materials, unless otherwise shown on the plans. When blending Class A and Class B aggregates to meet a Class A requirement, ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source, unless otherwise shown on the plans. Blend by volume if the bulk-specific gravities of the Class A and Class B aggregates differ by more than 0.300. Coarse aggregate from RAP and recycled asphalt shingles (RAS) will be considered as Class B aggregate for blending purposes.

The Engineer may perform tests anytime during production, when the Contractor blends Class A and Class B aggregates to meet a Class A requirement. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks to verify the percent of Class A aggregate retained on the No. 4 sieve. The Engineer will use the gradations supplied by the Contractor in the mixture design report as an input for the template. A failing spot check will require confirmation using a stockpile gradation determined by the Engineer.

2.1.1.2. **Micro-Deval Abrasion**. The Engineer will perform at least one Micro-Deval abrasion test in accordance with <u>Tex-461-A</u> for each coarse aggregate source used in the mixture design that has a rated source soundness magnesium (RSSM) loss value greater than 15 as listed in the BRSQC. The Engineer will perform testing before the start of production and may perform additional testing anytime during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

Mg_{est.} = (RSSM)(MD_{act.}/RSMD)

where:

 $Mg_{est.}$ = magnesium sulfate soundness loss RSSM = rated source soundness magnesium $MD_{act.}$ = actual Micro-Deval percent loss RSMD = rated source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Materials and Tests Division, and additional testing may be required before granting approval.

2.1.2. Intermediate Aggregate. Aggregates not meeting the definition of coarse or fine aggregate will be defined as intermediate aggregate. Supply intermediate aggregates, when used, that are free of organic impurities. Supply intermediate aggregate from coarse aggregate sources, when used, that meet the requirements shown in Table 1, unless otherwise approved.

2.1.3. Fine Aggregate. Fine aggregates consist of manufactured sands, screenings, and field sands. Fine aggregate stockpiles must meet the fine aggregate properties shown in Table 1 and the gradation requirements shown in Table 2. Supply fine aggregates that are free of organic impurities. The Engineer may test the fine aggregate in accordance with <u>Tex-408-A</u> to verify the material is free of organic impurities. Unless otherwise shown on the plans, a maximum of 10% of the total aggregate may be field sand or other uncrushed fine aggregate. Use fine aggregate, with the exception of field sand, from coarse aggregate sources that meet the requirements shown in Table 1, unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve and verify that it meets the requirements in Table 1 for crushed face count (<u>Tex-460-A</u>) and flat and elongated particles (<u>Tex-280-F</u>).

Table 1 Aggregate Quality Requirements							
Property Test Method Requirement							
Coarse Aggregate							
SAC	Tex-499-A (AQMP)	As shown on the plans					
Deleterious material, %, Max	Tex-217-F, Part I	1.0					
Decantation, %, Max	Tex-217-F, Part II	1.5					
Micro-Deval abrasion, %	Tex-461-A	Note 1					
Los Angeles abrasion, %, Max	Tex-410-A	35 ²					
Magnesium sulfate soundness, 5 cycles, %, Max	<u>Tex-411-A</u>	25 ³					
Crushed face count, ⁴ %, Min	Tex-460-A, Part I	85					
Flat and elongated particles @ 5:1, %, Max	Tex-280-F	10					
Fine Aggregate							
Linear shrinkage, %, Max	<u>Tex-107-E</u>	3					
Sand equivalent, %, Min	Tex-203-F	45 ⁵					
Organic impurities	Tex-408-A	Note 6					
Sand equivalent, %, Min	<u>Tex-203-F</u> Tex-408-A	Note 6					

 Used to estimate the magnesium sulfate soundness loss in accordance with Section 344.2.1.1.2., "Micro-Deval Abrasion."

- For base mixtures defined in Section 344.2.7., "Recycled Materials," the Los Angeles abrasion may be increased to a Max of 40%.
- 3. For base mixtures defined in Section 344.2.7., "Recycled Materials," the magnesium sulfate soundness, 5 cycles, may be increased to a Max of 30%.

4. Only applies to crushed gravel.

- The Department may perform <u>Tex-252-F</u> on fine aggregates not meeting this Min requirement. Fine aggregates with a methylene blue value of 10.0 mg/g or less may be used.
- 6. Optional test.

Gradation Requirements for Fine Aggregate				
Sieve Size % Passing by Weight or Volume				
3/8"	100			
#8	70–100			
#200	0–30			

Table 2

2.2.

Mineral Filler. Mineral filler consists of finely divided mineral matter, such as agricultural lime, crusher fines, hydrated lime, or fly ash. Mineral filler is allowed unless otherwise shown on the plans. Use no more than 2% hydrated lime or fly ash, unless otherwise shown on the plans. Use no more than 1% hydrated lime if a substitute binder is used, unless otherwise shown on the plans or allowed. Test all mineral fillers except hydrated lime and fly ash in accordance with <u>Tex-107-E</u> to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

- is dry enough, free-flowing, and free of clumps and foreign matter as determined by the Engineer;
- does not exceed 3% linear shrinkage when tested in accordance with <u>Tex-107-E</u>; and
- meets the gradation requirements shown in Table 3, unless otherwise shown on the plans.

Gradation Requirements for Mineral Filler				
Sieve Size % Passing by Wt. or Volume				
#8	100			
#200	55–100			

Table 3 Gradation Requirements for Mineral Fill

- 2.3. **Baghouse Fines**. Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.
- 2.4. **Asphalt Binder**. Furnish the type and grade of performance-graded (PG) asphalt binder specified on the plans that meets the requirements of Item 300, "Asphalts, Oils, and Emulsions."
- 2.5. **Tack Coat**. Furnish CSS-1H, SS-1H, emulsified bonding layer (EBL), or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300. Specialized tack coat materials on the MPL for *Tracking Resistant Asphalt Interlayer* (TRAIL) will be allowed or required when shown on the plans. The Engineer may suspend paving operations until there is adequate coverage. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required in conformance with the manufacturer's recommendation for approved TRAIL products on the MPL.
- 2.6. **Additives**. Use the type of additive specified when shown on the plans. Use the rate of additive specified in conformance with the manufacturer's recommendation. Additives that facilitate mixing and compaction, or improve the quality of the mixture, are allowed when approved. Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.
- 2.6.1. Lime and Liquid Antistripping Agent. Lime or liquid antistripping agent is required when shown on the plans. When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.
- 2.6.2. Warm-Mix Asphalt (WMA). WMA is defined as HMA that is produced within a target temperature discharge range of 215°F and 275°F using approved WMA additives or processes from the MPL.

WMA is allowed for use on all projects and is required when shown on the plans. When WMA is required, the maximum placement or target discharge temperature for WMA will be set at a value at or below 275°F.

Department-approved WMA additives or processes may be used to facilitate mixing and compaction of HMA produced at target discharge temperatures above 275°F; however, such mixtures will not be defined as WMA.

2.6.3. **Compaction Aid**. Compaction aid is defined as a Department-approved chemical warm-mix additive, denoted as "chemical additive" on the MPL, that is used to facilitate mixing and compaction of HMA at a discharge temperature greater than 275°F.

Compaction aid is allowed for use on all projects. Compaction aid is required when shown on the plans or as required in Section 344.4.7.1., "Weather Conditions."

Warm-mix foaming processes, denoted as "foaming process" on the MPL, may be used to facilitate mixing and compaction of HMA at target discharge temperatures greater than 275°F; however, warm-mix foaming processes are not defined as a compaction aid.

2.7. **Recycled Materials**. Use of RAP and RAS is permitted unless otherwise shown on the plans. Use of RAS is restricted to only intermediate and base mixes unless otherwise shown on the plans. Do not exceed the maximum allowable percentages of RAP and RAS shown in Table 4. The allowable percentages in shown in Table 4 may be decreased or increased when shown on the plans. Determine the asphalt binder content and

gradation of the RAP and RAS stockpiles for mixture design purposes in accordance with <u>Tex-236-F</u>, Part I. The Engineer may verify the asphalt binder content of the stockpiles anytime during production. Perform other tests on RAP and RAS when shown on the plans. Asphalt binder from RAP and RAS is designated as recycled asphalt binder. Calculate and ensure that the ratio of the recycled asphalt binder to total binder does not exceed the percentages in accordance with Table 5 during mixture design and HMA production when RAP or RAS are used. Use a separate cold feed bin for each stockpile of RAP and RAS during HMA production.

Surface, intermediate, and base mixes shown in Table 4 and Table 5 are defined as follows, unless otherwise shown on the plans.

- Surface. The final HMA lift placed at the top of the pavement structure.
- Intermediate. Mixtures placed below an HMA surface mix and less than or equal to 8.0 in. below the riding surface.
- Base. Mixtures placed greater than 8.0 in. below the riding surface. Unless otherwise shown on the plans, mixtures used for bond breaker are defined as base mixtures.

2.7.1. **RAP**. RAP is salvaged, milled, pulverized, broken, or crushed asphalt pavement. Fractionated RAP is defined as a stockpile that contains RAP material with at least 95.0% passing the 1/2-in. sieve, before burning in the ignition oven, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 1/2-in. screen to fractionate the RAP.

Use of Contractor-owned RAP, including HMA plant waste, is permitted unless otherwise shown on the plans. Department-owned RAP stockpiles are available for the Contractor's use when the stockpile locations are shown on the plans. If Department-owned RAP is available for the Contractor's use, the Contractor may use Contractor-owned fractionated RAP and replace it with an equal quantity of Department-owned RAP. Department-owned RAP generated through required work on the Contractor is available for the Contractor's use when shown on the plans. Perform any necessary tests to ensure Contractor- or Department-owned RAP is appropriate for use. The Department will not perform any tests or assume any liability for the quality of the Department-owned RAP unless otherwise shown on the plans. The Contractor will retain ownership of RAP generated on the project when shown on the plans.

Do not use Department- or Contractor-owned RAP contaminated with dirt or other objectionable materials. Do not use Department- or Contractor-owned RAP if the decantation value exceeds 5% and the plasticity index is greater than eight. Test the stockpiled RAP for decantation in accordance with <u>Tex-406-A</u>, Part I. Determine the plasticity index in accordance with <u>Tex-106-E</u> if the decantation value exceeds 5%. The decantation and plasticity index requirements do not apply to RAP samples with asphalt removed by extraction or ignition.

Do not intermingle Contractor-owned RAP stockpiles with Department-owned RAP stockpiles. Remove unused Contractor-owned RAP material from the project site upon completion of the project. Return unused Department-owned RAP to the designated stockpile location.

I able 4 Max Allowable Amounts of RAP ¹				
Max Allowable Fractionated RAP (%)				
Surface Intermediate Base				
20.0 30.0 35.0				

1. Must also meet the recycled binder to total binder ratio shown in Table 5.

2.7.2. RAS is defined as processed asphalt shingle material from manufacturing of asphalt roofing shingles or from re-roofing residential structures. Post-manufactured RAS are processed manufacturer's shingle scrap byproduct. Post-consumer RAS are processed shingle scrap removed from residential structures. Use of post-manufactured RAS or post-consumer RAS (tear-offs) is not permitted in surface mixtures unless otherwise shown on the plans. RAS may be used in intermediate and base mixtures unless otherwise shown

on the plans. Up to 3% RAS may be used separately or as a replacement for fractionated RAP in accordance with Table 4 and Table 5. RAS may be used separately or in conjunction with RAP. Comply with all regulatory requirements stipulated for RAS by TCEQ.

Process the RAS by ambient grinding or granulating such that 100% of the particles pass the 3/8-in. sieve when tested in accordance with <u>Tex-200-F</u>, Part I. Perform a sieve analysis on processed RAS material before extraction (or ignition) of the asphalt binder.

Add sand meeting the requirements shown in Table 1 and Table 2, or fine RAP, to RAS stockpiles if needed to keep the processed material workable. Any stockpile that contains RAS will be considered a RAS stockpile and be limited to no more than 3.0% of the HMA mixture shown in Table 4.

Certify compliance of the RAS with <u>DMS-11000</u>, "Evaluating and Using Nonhazardous Recyclable Materials Guidelines." Treat RAS as an established nonhazardous recyclable material if they have not contacted any hazardous materials. Use RAS from shingle sources listed on the MPL. Remove all materials that are not part of the shingle, such as wood, paper, metal, plastic, and felt paper, before use. Determine the deleterious content of RAS material for mixture design purposes in accordance with <u>Tex-217-F</u>, Part III. Do not use RAS if deleterious materials are more than 0.5% of the stockpiled RAS, unless otherwise approved. Submit a sample for approval before submitting the mixture design. The Department will perform the testing for deleterious material of RAS to determine specification compliance.

2.8. **Substitute Binders**. No binder substitution will be allowed when shown on the plans. The Contractor may use a substitute PG binder listed in Table 5 instead of the PG binder originally specified, if using recycled materials, and if the substitute PG binder and mixture made with the substitute PG binder meet the following:

- the substitute binder meets the specification requirements for the substitute binder grade in accordance with Section 300.2.11., "Performance-Graded Binders;" and
- the mixture has less than 10.0 mm of rutting on the Hamburg wheel test (<u>Tex-242-F</u>) after the number of passes required for the originally specified binder. Use of substitute PG binders may only be allowed at the discretion of the Engineer if the Hamburg wheel test results are between 10.0 mm and 12.5 mm.

Originally Specified PG	Allowable Substitute PG Binder	Allowable Substitute PG Binder for Intermediate	Max Ratio of Recycled B to Total Binder (%)			
Binder	for Surface Mixes	and Base Mixes	Surface	Intermediate	Base	
76-22	70-22	70-22	15.0	25.0	30.0	
70-22	Note ²	64-22	15.0	25.0	30.0	
64-22	Note ²	Note ²	15.0	25.0	30.0	
76-28	70-28	70-28	15.0	25.0	30.0	
70-28	Note ²	64-28	15.0	25.0	30.0	
64-28	Note ²	Note ²	15.0	25.0	30.0	

Table 5	
and Mary Damain	d Dia dan E

1. Combined recycled binder from RAP and RAS. RAS is not permitted in surface mixtures unless otherwise shown on the plans.

2. No binder substitution is allowed.

EQUIPMENT

3.

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement."

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required in accordance with the Specification, the Contractor may perform other QC tests as deemed necessary. Anytime during the project, the Engineer may perform production and placement tests as deemed necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. **Certification**. Personnel certified by the Department-approved HMA certification program must conduct all mixture designs, sampling, and testing in accordance with Table 6. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2-certified specialist. Provide Level 1A-certified specialists at the plant during production operations. Provide Level 1B-certified specialists to conduct placement tests. Provide Level-AGG101 certified specialists for aggregate testing.

Test Description Agg Sampling Dry sieve	Test Method gregate and Recycled M	Contractor	Engineer	Level ¹
Sampling		Interial Testing		
		haterial resting		
Dry sieve	<u>Tex-221-F</u>	\checkmark	\checkmark	1A/AGG101
	Tex-200-F, Part I	\checkmark	\checkmark	1A/AGG101
Washed sieve	<u>Tex-200-F</u> , Part II	\checkmark	\checkmark	1A/AGG101
Deleterious material	Tex-217-F, Part I and Part III	\checkmark	\checkmark	AGG101
Decantation	Tex-217-F, Part II	✓	✓	AGG101
Los Angeles abrasion	Tex-410-A	-	✓	Department
Magnesium sulfate soundness	Tex-411-A	-	✓	Department
Micro-Deval abrasion	Tex-461-A	_	\checkmark	AGG101
Crushed face count	Tex-460-A	\checkmark	\checkmark	AGG101
Flat and elongated particles	Tex-280-F	\checkmark	\checkmark	AGG101
Linear shrinkage	Tex-107-E	\checkmark	\checkmark	AGG101
Sand equivalent	Tex-203-F	\checkmark	✓	AGG101
Methylene blue test	Tex-252-F	_	✓	Department
Bulk-specific gravity	Tex-201-F	✓	✓	AGG101
Organic impurities	Tex-408-A	✓	✓	AGG101
	phalt Binder and Tack	Coat Sampling		
Asphalt binder sampling	Tex-500-C, Part II	✓	✓	1A/1B
Tack coat sampling	Tex-500-C, Part III	✓	✓	1A/1B
	Mix Design and Ver	ification		
Design and job-mix formula (JMF) changes	<u>Tex-204-F</u>	√	✓	2
Mixing	Tex-205-F	✓	✓	2
Molding (Superpave gyratory				
compactor [SGC])	<u>Tex-241-F</u>	\checkmark	✓	1A
Laboratory-molded density	Tex-207-F, Part I and Part VI	\checkmark	\checkmark	1A
Rice gravity	<u>Tex-227-F</u> , Part II	\checkmark	\checkmark	1A
Ignition oven correction factors ²	Tex-236-F, Part II	\checkmark	\checkmark	1A
Indirect tensile strength	Tex-226-F	\checkmark	\checkmark	1A
Hamburg wheel test	Tex-242-F	\checkmark	✓	1A
Witnessing mixing of correction factors	Tex-236-F, Part III	-	✓	Department
Boil test	Tex-530-C	\checkmark	✓	1A
	Production Tes	ting		
Selecting production random numbers	Tex-225-F, Part I	-	\checkmark	1A
Mixture sampling	Tex-222-F	✓	\checkmark	1A/1B
Molding (SGC)	Tex-241-F	\checkmark	\checkmark	1A
Laboratory-molded density	Tex-207-F, Part I and Part VI	\checkmark	\checkmark	1A
Rice gravity	Tex-227-F, Part II	✓	✓	1A

Table 6 Test Methods, Test Responsibility, and Min Certification Levels

Test Description	Test Method	Contractor	Engineer	Level ¹
Gradation and asphalt binder content ²	Tex-236-F, Part I	✓	~	1A
Control charts	Tex-233-F	✓	✓	1A
Moisture content	Tex-212-F, Part II	✓	\checkmark	1A/AGG101
Hamburg wheel test	<u>Tex-242-F</u>	✓	✓	1A
Micro-Deval abrasion	<u>Tex-461-A</u>	-	\checkmark	AGG101
Boil test	<u>Tex-530-C</u>	✓	✓	1A
Abson recovery	Tex-211-F	-	\checkmark	Department
	Placement Tes	ting		
Selecting placement random numbers	<u>Tex-225-F</u> , Part II		\checkmark	1B
Trimming roadway cores	<u>Tex-251-F</u> , Part I and Part II	\checkmark	\checkmark	1A/1B
In-place air voids	<u>Tex-207-F</u> , Part I and Part VI	~	~	1A
In-place density (nuclear method)	Tex-207-F, Part III	✓	-	1B
Establish rolling pattern	<u>Tex-207-F</u> , Part IV	✓	-	1B
Control charts	<u>Tex-233-F</u>	✓	✓	1A
Ride quality measurement	<u>Tex-1001-S</u>	✓	✓	Note ³
Segregation (density profile)	Tex-207-F, Part V	✓	\checkmark	1B
Longitudinal joint density	Tex-207-F, Part VII	✓	✓	1B
Thermal profile	<u>Tex-244-F</u>	✓	✓	1B
Shear bond strength test	<u>Tex-249-F</u>	-	\checkmark	Department

1. Levels 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.

2. Refer to Section 344.4.9.2.3., "Production Testing," for exceptions to using an ignition oven.

3. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when surface test Type B is specified.

4.2. **Reporting and Responsibilities**. Use Department-provided templates to record and calculate all test data, including mixture design, production and placement QC and quality assurance (QA), control charts, thermal profiles, segregation density profiles, and longitudinal joint density. Obtain the current version of the templates from the Department's website or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is shown in Table 7, unless otherwise approved. The Engineer and the Contractor will immediately report to the other party any test result that requires suspension of production or placement, or a payment adjustment less than 1.000, or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

Description	Reported By	orting Schedule Reported To	To Be Reported Within
Description			
	Producti	on Quality Control	
Gradation ¹			
Asphalt binder content ¹			
Laboratory-molded density ²	Contractor	Engineer	1 working day of completion of the sublot
Moisture content ³			
Boil test ⁴			
	Productio	n Quality Assurance	e
Gradation ³			
Asphalt binder content ³			
Laboratory-molded density ¹	Engineer	Contractor	1 working day of completion of the sublo
Hamburg wheel test ⁵	Lightee	Contractor	working day of completion of the subject
Boil test ⁴			
Binder tests ⁵			
	Placeme	ent Quality Control	
In-place air voids ²			
Segregation ¹	Contractor	Engineer	1 working day of completion of the lot
Longitudinal joint density ¹	Contractor	Engineer	I working day of completion of the lot
Thermal profile ¹			
	Placemen	t Quality Assuranc	e
In-place air voids1			1 working day after receiving the trimmed cores ⁶
Segregation ³			
Longitudinal joint density ³	Engineer	Contractor	4 monthing along of assumptions of the state
Thermal profile ³	0		1 working day of completion of the lot
Aging ratio ⁵			
Shear bond strength test ⁵			5 working days after receiving the cores
	Frainson	Contractor	2 working days of performing all required
Payment adjustment summary	Engineer	Contractor	tests and receiving Contractor test data

Table 7

These tests are required on every sublot. 1

Optional test. When performed on split samples, report the results as soon as they become available. 2.

- 3. To be performed at the frequency shown in Table 16 or as shown on the plans.
- 4. When shown on the plans.
- 5. To be reported as soon as the results become available.
- 6. Two days are allowed if cores cannot be dried to constant weight within 1 day.

The Engineer will use the Department-provided template to calculate all payment adjustment factors for the lot. Sublot samples may be discarded after the Engineer and Contractor sign-off on the payment adjustment summary documentation for the lot.

Use the procedures described in Tex-233-F to plot the results of all QC and QA testing. Update the control charts as soon as test results for each sublot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. Quality Control Plan (QCP). Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

> Submit a written QCP before the mandatory pre-paving meeting. Receive approval of the QCP before beginning production. Include the following items in the QCP.

- 4.3.1. Project Personnel. For project personnel, include:
 - a list of individuals responsible for QC with authority to take corrective action,
 - current contact information for each individual listed, and
 - current copies of certification documents for individuals performing specified QC functions.

9

- 4.3.2. Material Delivery and Storage. For material delivery and storage, include:
 - the sequence of material processing, delivery, and minimum quantities to assure continuous plant operations:
 - aggregate stockpiling procedures to avoid contamination and segregation;
 - frequency, type, and timing of aggregate stockpile testing to assure conformance with material requirements before mixture production; and
 - procedure for monitoring the quality and variability of asphalt binder.
- 4.3.3. **Production**. For production, include:
 - loader operation procedures to avoid contamination in cold bins;
 - procedures for calibrating and controlling cold feeds;
 - procedures to eliminate debris or oversized material;
 - procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, RAP, RAS, lime, liquid antistrip, compaction aid, foaming process, and WMA);
 - procedures for reporting job control test results; and
 - procedures to avoid segregation and drain-down in the silo.

4.3.4. **Loading and Transporting**. For loading and transporting, include:

- type and application method for release agents, and
- truck-loading procedures to avoid segregation.
- 4.3.5. Placement and Compaction. For placement and compaction, include:
 - proposed agenda for mandatory pre-paving meeting, including date and location;
 - proposed paving plan (e.g., production rate, paving widths, joint offsets, and lift thicknesses);
 - type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils;
 - procedures for the transfer of mixture into the paver while avoiding physical and thermal segregation and preventing material spillage;
 - process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality;
 - paver operations (e.g., speed, operation of wings, and height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and
 - procedures to construct quality longitudinal and transverse joints.

4.4. Mixture Design.

4.4.1. **Design Requirements**. Use the SP design procedure provided in <u>Tex-204-F</u>, unless otherwise shown on the plans. Design the mixture to meet the requirements listed in Tables 1, 2, 3, 4, 5, 8, 9, and 10.

Design the mixture using an SGC and 50 gyrations as the design number of gyrations (Ndesign). Use a target laboratory-molded density of 96.0% to design the mixture; however, adjustments can be made to the Ndesign value shown in Table 9. The Ndesign level may be reduced to at least 35 gyrations at the Contractor's discretion.

Use a Department-approved laboratory listed on the MPL to perform the Hamburg wheel test and provide results with the mixture design, or provide the laboratory mixture and request that the Department perform the Hamburg wheel test. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the laboratory mixture design.

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design anytime during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor may begin production.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report.

- the combined aggregate gradation, source, specific gravity, and percent of each material used
- the binder source and optimum design asphalt content
- asphalt binder content and aggregate gradation of RAP and RAS stockpiles
- the Ndesign level used on the SGC
- results of all applicable tests
- the mixing and molding temperatures
- the signature of the Level 2 person or persons who performed the design
- the date the mixture design was performed
- a unique identification number for the mixture design

Mineral Aggregates (VMA) Requirements					
SP-B	SP-C	SP-D			
Intermediate	Surface	Fine Mixture			
-	-	-			
100.0 ¹	-	-			
98.0-100.0	100.0 ¹	-			
90.0-100.0	98.0-100.0	100.0 ¹			
Note ²	90.0-100.0	98.0-100.0			
—	Note ²	90.0-100.0			
23.0-90.0	28.0-90.0	32.0-90.0			
23.0-34.6	28.0-37.0	32.0-40.0			
2.0-28.3	2.0-31.6	2.0-37.6			
2.0-20.7	2.0-23.1	2.0-27.5			
2.0-13.7	2.0–15.5	2.0-18.7			
2.0-8.0	2.0-10.0	2.0-10.0			
Design VMA, % Min					
14.0	15.0	16.0			
Production (Plant-Produced) VMA, % Min					
- 13.5 14.5 15.5					
	Mineral Aggrega SP-B Intermediate - 100.01 98.0–100.0 90.0–100.0 Note ² - 23.0–90.0 23.0–34.6 2.0–28.3 2.0–20.7 2.0–13.7 2.0–8.0 Design 14.0 Production (Plant- 13.5	Mineral Aggregates (VMA) Requirem SP-B SP-C Intermediate Surface - - 100.01 - 98.0–100.0 100.01 90.0–100.0 98.0–100.0 Note ² 90.0–100.0 - Note ² 23.0–90.0 28.0–90.0 23.0–34.6 28.0–37.0 2.0–28.3 2.0–31.6 2.0–20.7 2.0–23.1 2.0–13.7 2.0–15.5 2.0–8.0 2.0–10.0 Design VMA, % Min 14.0 15.0 Production (Plant-Produced) VMA, %			

Table 8 Master Gradation Limits (% Passing by Wt. or Volume) and Voids in Mineral Aggregates (VMA) Requirements

1. Defined as Max sieve size. No tolerance allowed.

2. Must retain at least 10% cumulative.

Mixture Property	Test Method	Requirement			
Target laboratory-molded density, %	<u>Tex-207-F</u>	96.0			
Design gyrations (Ndesign)	<u>Tex-241-F</u>	50 ¹			
Indirect tensile strength (dry), psi	Tex-226-F	85–200 ²			
Dust/asphalt binder ratio ³	-	0.6–1.4			
Boil test ⁴	<u>Tex-530-C</u>	-			

Table 9 Laboratory Mixture Design Properties

1. Adjust within a range of 35–100 gyrations when shown on the plans or specification or mutually agreed between the Engineer and Contractor.

 The Engineer may allow the IDT strength to exceed 200 psi if the corresponding Hamburg wheel rut depth is greater than 2.5 mm and less than 12.5 mm.

3. Defined as % passing #200 sieve divided by asphalt binder content.

4. When shown on the plans. Used to establish baseline for comparison to production results.

344

High-Temperature Binder Grade Test Method		Min # of Passes @ 12.5 mm ¹ Rut Depth, Tested @ 50°C	
PG 64 or lower		10,000 ²	
PG 70	Tex-242-F	15,000 ³	
PG 76 or higher		20,000	

Table 10 Hamburg Wheel Test Requirements

1. The Hamburg wheel test will have a Min rut depth of 2.5 mm.

2. May be decreased to a Min of 5,000 passes when shown on the plans.

3. May be decreased to a Min of 10,000 passes when shown on the plans.

4.4.2. **Job-Mix Formula Approval**. The JMF is the combined aggregate gradation, Ndesign level, and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When WMA is used, JMF1 may be designed and submitted to the Engineer without including the WMA additive, foaming process, or compaction aid. When WMA or a compaction aid is used, document the additive or process used and recommended rate in the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch, unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than two trial batches per design are required.

4.4.2.1. Contractor's Responsibilities.

- 4.4.2.1.1. **Providing Superpave Gyratory Compactor (SGC)**. Provide an SGC in accordance with Item 504, "Field Office and Laboratory," and make the SGC available to the Engineer for use in molding production samples.
- 4.4.2.1.2. **Gyratory Compactor Correlation Factors**. Use <u>Tex-206-F</u> Part II, to perform a gyratory compactor correlation when the Engineer uses a different SGC. Apply the correlation factor to all subsequent production test results.
- 4.4.2.1.3. **Submitting JMF1**. Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide approximately 25 lb. of the design mixture if opting to have the Department perform the Hamburg wheel test on the laboratory mixture, and request that the Department perform the test.
- 4.4.2.1.4. **Supplying Aggregates**. Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.
- 4.4.2.1.5. **Supplying Asphalt**. Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.
- 4.4.2.1.6. **Ignition Oven Correction Factors**. Notify the Engineer before performing <u>Tex-236-F</u>, Part II. Allow the Engineer to witness the mixing of ignition oven correction factor samples. Determine the aggregate and asphalt correction factors from the ignition oven in accordance with <u>Tex-236-F</u>, Part II.

If the Engineer witnesses the mixing of the ignition oven correction factor samples, provide the Engineer with identically prepared samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for QA testing during production.

Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used, unless otherwise directed. Correction factors must be performed every 12 mo.

4.4.2.1.7. **Boil Test**. When shown on the plans, perform the test and retain the tested sample from <u>Tex-530-C</u> until completion of the project or as directed. Use this sample for comparison purposes during production.

- 4.4.2.1.8. **Trial Batch Production**. Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch. If applicable, include the WMA additive, foaming process, or compaction aid for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements shown in Tables 4, 5, and 11. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.
- 4.4.2.1.9. **Trial Batch Production Equipment**. Use only equipment and materials proposed for use on the project to produce the trial batch.
- 4.4.2.1.10. **Trial Batch Quantity**. Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.
- 4.4.2.1.11. **Number of Trial Batches**. Produce trial batches as necessary to obtain a mixture that meets the specification requirements.
- 4.4.2.1.12. **Trial Batch Sampling**. Obtain a representative sample of the trial batch and split it into three equal portions in accordance with <u>Tex-222-F</u>. Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.
- 4.4.2.1.13. **Trial Batch Testing**. Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements shown in Table 11. Ensure the trial batch mixture is also in compliance with the Hamburg wheel test requirement shown in Table 10. Use a Department-approved laboratory on the MPL to perform the Hamburg wheel test on the trial batch mixture, or request that the Department perform the Hamburg wheel test. Provide approximately 25 lb. of the trial batch mixture if opting to have the Department perform the Hamburg wheel test, and request that the Department perform the test. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.
- 4.4.2.1.14. **Development of JMF2**. After the Engineer grants full approval of JMF1, evaluate the trial batch test results, determine the optimum mixture proportions, and submit as JMF2. Adjust the asphalt binder content or gradation to achieve the specified target laboratory-molded density. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the VMA requirements for production shown in Table 8. If the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform <u>Tex-226-F</u> on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi. Verify that JMF2 meets the mixture requirements shown in Table 4 and Table 5.
- 4.4.2.1.15. **Mixture Production**. Use JMF2 to produce Lot 1 as described in Section 344.4.9.3.1.1., "Lot 1 Placement," after receiving approval for JMF2 and a passing Hamburg wheel result on the trial batch from a laboratory listed on the MPL. Once JMF2 is approved, and without receiving the results from the Department's Hamburg wheel test on the trial batch, the Contractor may proceed to Lot 1 production at their own risk.

Notify the Engineer if electing to proceed without Hamburg wheel test results from the trial batch. Note that the Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test to be removed and replaced at the Contractor's expense.

- 4.4.2.1.16. **Development of JMF3**. Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.
- 4.4.2.1.17. **JMF Adjustments**. If JMF adjustments are necessary to achieve the specified requirements, make the adjustment before beginning a new lot. The adjusted JMF must:
 - be provided to the Engineer in writing before the start of a new lot,
 - be numbered in sequence to the previous JMF,
 - meet the mixture requirements shown in Table 4 and Table 5,

344

- meet the master gradation limits shown in Table 8, and
- be within the operational tolerances of JMF2 shown in Table 11.
- 4.4.2.1.18. **Requesting Referee Testing**. Use referee testing, if needed, in accordance with Section 344.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Table 11 Operational Tolerances					
Description	Test Method	Allowable Difference Between JMF2 and JMF1 Target ¹	Allowable Difference Between Current JMF and JMF2 ²	Allowable Difference Between Contractor and Engineer ³	
Individual % retained on #8 sieve and larger	Тау 200 Г	Must be within	±5.04	±5.0	
Individual % retained on sieves smaller than #8 and larger than #200		master gradation limits	±3.04	±3.0	
% passing the #200 sieve	<u>16X-230-F</u>		±2.04	±1.6	
Asphalt binder content, %	Tex-236-F	±0.5	±0.3	±0.3	
Dust/asphalt binder ratio ⁵	-	Note 6	Note 6	_	
Laboratory-molded density, %		±1.0	±1.0	±0.5	
In-place air voids, %	Tex-207-F	-	-	±1.0	
Laboratory-molded bulk specific gravity		_	-	±0.020	
VMA, %, Min	Tex-204-F	Note 7	Note 7	_	
Theoretical Max specific (Rice) gravity	<u>Tex-227-F</u>	-		±0.020	

1. JMF1 is the approved laboratory mixture design used for producing the trial batch. JMF2 is the approved mixture design developed from the trial batch used to produce Lot 1.

- 2. Current JMF is JMF3 or higher. JMF3 is the approved mixture design used to produce Lot 2.
- 3. Contractor may request referee testing only when values exceed these tolerances.
- 4. When within these tolerances, mixture production gradations may fall outside the master gradation limits; however, the % passing the #200 and the % passing the #8 will be considered out of tolerance when outside the master gradation limits.
- 5. Defined as % passing #200 sieve divided by asphalt binder content.
- 6. Verify that Table 9 requirements are met.
- 7. Verify that Table 8 requirements are met for VMA.

4.4.2.2. Engineer's Responsibilities.

4.4.2.2.1. **Superpave Gyratory Compactor**. The Engineer will use a Department SGC, calibrated in accordance with <u>Tex-241-F</u>, to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location.

4.4.2.2.2. **Conditional Approval of JMF1 and Authorizing Trial Batch**. The Engineer will review and verify conformance with the following information within 2 working days of receipt.

- the Contractor's mix design report (JMF1);
- the Contractor-provided Hamburg wheel test results;
- all required materials including aggregates, asphalt, additives, and recycled materials; and
- the mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg wheel test results with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on the test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with Section 344.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after 2 working days,

The Contractor is authorized to produce a trial batch after the Engineer grants conditional approval or JMF1.

- 4.4.2.2.3. Hamburg Wheel Testing of JMF1. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the laboratory mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg wheel test requirement shown in Table 10. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the laboratory mixture design.
- 4.4.2.2.4. **Ignition Oven Correction Factors**. The Engineer will determine ignition oven correction factors by one of the following options.
 - Witness the mixing of ignition oven correction factor samples by the Contractor in accordance with <u>Tex-236-F</u>, Part III. The Engineer will use the identically prepared samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven in accordance with <u>Tex-236-F</u>, Part II.
 - If the Engineer does not witness the mixing of ignition oven correction factor samples, the Engineer will prepare the samples to determine the aggregate and asphalt correction factors for the ignition oven in accordance with <u>Tex-236-F</u>, Part II. Notify the Contractor before performing <u>Tex-236-F</u>, Part II. Allow the Contractor to witness the Engineer performing <u>Tex-236-F</u>, Part II.

Correction factors must be performed every 12 mo. to be used for QA testing during production.

4.4.2.2.5. **Testing the Trial Batch**. Within 1 full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements shown in Table 11. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the trial batch mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg wheel test requirement shown in Table 10.

The Engineer will have the option to perform the following tests on the trial batch:

- **Tex-226-F**, to verify that the indirect tensile strength meets the requirement shown in Table 9; and
- <u>Tex-530-C</u>, to retain and use for comparison purposes during production.
- 4.4.2.2.6. **Full Approval of JMF1**. The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements shown in Tables 8, 9, and 10. The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.
- 4.4.2.2.7. **Approval of JMF2**. The Engineer will approve JMF2 within 1 working day if the mixture meets the requirements shown in Table 5 and Table 8. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the VMA requirements shown in Table 8. If the optimum asphalt binder content for JMF1; however, mixture produced using JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform <u>Tex-226-F</u> on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi.
- 4.4.2.2.8. **Approval of Lot 1 Production**. The Engineer will authorize the Contractor to proceed with JMF2 for Lot 1 production after a passing Hamburg wheel test result on the trial batch is achieved from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch.

If the Department-approved laboratory's sample from the trial batch fails the Hamburg wheel test, the

Engineer will suspend production until further Hamburg wheel tests meet the specified values. The Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test be removed and replaced at the Contractor's expense.

- 4.4.2.2.9. **Approval of JMF3 and Subsequent JMF Changes**. JMF3 and subsequent JMF changes are approved if they meet the mixture requirements shown in Table 4 and Table 5, and the master gradation limits shown in Table 8, and they are within the operational tolerances of JMF2 shown in Table 11. Current JMF changes that exceed the operational tolerances of JMF2 shown in Table 11 may require a new laboratory mixture design, trial batch, or both. The addition of a WMA additive to facilitate mixing or as a compaction aid does not require a new laboratory mixture design or trial batch.
- 4.5. **Production Operations**. Perform a new trial batch when the plant or plant location is changed. All source changes for asphalt will require a passing Hamburg wheel test result from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch. All aggregate source changes will require a new laboratory mixture design and trial batch. Take corrective action and receive approval to proceed after any production suspension for noncompliance with the specification. Submit a new mix design and perform a new trial batch when the asphalt binder content of:
 - any RAP stockpile used in the mix is more than 0.5% higher than the value shown in the mixture design report; or
 - RAS stockpile used in the mix is more than 2.0% higher than the value shown in the mixture design report.
- 4.5.1. **Storage and Heating of Materials**. Do not heat the asphalt binder above the temperatures specified in Item 300, or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and HMA discharge temperatures (in legible and discernible increments) in accordance with Item 320, unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.
- 4.5.2. **Mixing and Discharge of Materials**. Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperatures shown in Table 12. The Department will not pay for or allow placement of any mixture produced above the maximum production temperatures shown in Table 12.

Table 12 Max Production Temperature			
Max Production Temperature (°F)			
325 ²			
335 ²			
345 ²			

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

2. The Max production temperature of WMA is 275°F.

Produce WMA within the target discharge temperature range of 215–275°F when WMA is required. Take corrective action anytime the discharge temperature of the WMA exceeds the target discharge range. The Engineer may suspend production operations if the Contractor's corrective action is not successful at controlling the production temperature within the target discharge range. Note that when WMA is produced, it may be necessary to adjust burners to ensure complete combustion such that no burner fuel residue remains in the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with <u>Tex-212-F</u>, Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck and perform the test promptly.

4.6. **Hauling Operations**. Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent listed on the MPL to coat the inside bed of the truck when necessary. Do not use diesel or any release agent not listed on the MPL.

Use equipment for hauling as defined in Section 344.4.7.3.3., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. Placement Operations. Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a handheld thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture as discharged from the truck or material transfer device (MTD) before or as the mix enters the paver. Measure the mixture temperature at a minimum frequency of one per ten trucks, or as approved. Include an approximate station number or Global Positioning System coordinates of the location where the temperature was taken on each ticket. Ensure the mixture meets the temperature requirements shown in Table 12. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide within 6 in. of lane lines, are not placed in the wheel path, or will not be covered with pavement markings, or as directed. Ensure that all finished surfaces will drain properly. Place the mixture at the rate or thickness shown on the plans. The Engineer will use the guidelines shown in Table 13 to determine the compacted lift thickness of each layer when multiple lifts are required. The thickness determined is based on the rate of 110 lb. per square yard for each inch of pavement unless otherwise shown on the plans.

Mixture	Compacted Lift Thie	ckness Guidelines	Min Untrimmed Core Height Eligible for Testing	
Type	Min	Max		
туре	(in.)	(in.)	(in.)	
SP-B	2.50	4.0	2.00	
SP-C	2.00	3.0	1.25	
SP-D	1.25	2.0	1.25	

Table 13 Compacted Lift Thickness and Required Core Height

4.7.1. Weather Conditions.

4.7.1.1. When Using a Thermal Imaging System. Place mixture when the roadway surface is dry and the roadway surface temperature is at or above the temperatures shown in Table 14A, unless otherwise approved or shown on the plans. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 344.4.7.3.1.2., "Thermal Imaging System."

High-Temperature	Min Pavement Surface Temperatures (°F)		
Binder Grade ¹	Subsurface Layers	Surface Layers	
PG 64	35	40	
PG 70	45 ²	50 ²	
PG 76	45 ²	50 ²	

Table 14A
Min Pavement Surface Temperatures
Min Dessent Orafaas Terra

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

^{4.7.1.2.} When Not Using a Thermal Imaging System. When using a thermal camera instead of the thermal imaging system, place mixture when the roadway surface temperature is at or above the temperatures shown in Table 14B, unless otherwise approved or shown on the plans. Measure the roadway surface temperature using a handheld thermal camera or infrared thermometer. The Engineer may allow mixture placement to begin before the roadway surface reaches the required temperature if conditions are such that the roadway surface will reach the required temperature within 2 hr. of beginning placement operations. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer.

High-Temperature	Min Pavement Surface Temperatures Min Pavement Surface Temperatures (°F)		
Binder Grade ¹	Subsurface Layers	Surface Layers	
PG 64	45	50	
PG 70	55 ²	60 ²	
PG 76	60 ²	60 ²	
1 The high-temperatur	erature hinder grade refers to the high-temperature grade of the virgin		

Table 14B Min Pavement Surface Temperatures

 The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

2. The Contractor may pave at temperatures 10°F lower than these values when a chemical WMA additive is used as a compaction aid in the mixture, when using WMA, or when using a paving process with equipment that eliminates thermal segregation. In such cases, for each sublot and in the presence of the Engineer, use a handheld thermal camera operated in accordance with <u>Tex-244-F</u> to demonstrate to the satisfaction of the Engineer that the uncompacted mat has no more than 10°F of thermal segregation.

4.7.2. **Tack Coat**.

- 4.7.2.1. Application. Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 gal. and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply the tack coat to all surfaces that will contact the subsequent HMA placement, unless otherwise directed. Apply adequate overlap of the tack coat in the longitudinal direction during placement of the mat to ensure bond of adjacent mats, unless otherwise directed. Allow adequate time for emulsion to break completely before placing any material. Prevent splattering of tack coat when placed adjacent to curb, gutter, and structures. The Engineer may suspend paving operations until there is adequate coverage. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required in conformance with the manufacturer's recommendation for approved TRAIL products listed on the MPL.
- 4.7.2.2. **Sampling.** The Engineer will obtain at least one sample of the tack coat binder per project per source in accordance with <u>Tex-500-C</u>, Part III, and test it to verify compliance with Item 300. The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample from the asphalt distributor immediately before use. Label the can with the corresponding lot and sublot numbers, producer, name; producer facility location, grade, District, date sampled, all applicable bills of lading (if available), and project information including highway and control-section-job (CSJ) number. For emulsions, the Engineer

Contractors may pave at temperatures 10°F lower than these values when a chemical WMA additive is used as a compaction aid in the mixture or when using WMA.

may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in accordance with Item 300.

4.7.3. **Lay-Down Operations**. Use the placement temperatures in accordance with Table 15 to establish the minimum placement temperature of mixture delivered to the paving operation.

Table 15 Min Mixture Placement Temperature			
High-Temperature Min Placement Temperature ^{2,3,4}			
Binder Grade ¹	(°F)		
PG 64	260°F		
PG 70	270°F		
PG 76	280°F		

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

- The mixture temperature must be measured using a handheld thermal camera or infrared thermometer immediately before entering MTD or paver.
- Min placement temperatures may be reduced 20°F if using a chemical WMA additive as a compaction aid, MTD with remixing capabilities, or paver hopper insert with remixing capabilities.
- 4. When using WMA, the Min placement temperature is 215°F.
- 4.7.3.1. **Thermal Profile**. Use a handheld thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with <u>Tex-244-F</u>. Thermal profiles are not applicable in areas described in Section 344.4.9.3.1.4., "Miscellaneous Areas."
- 4.7.3.1.1. Thermal Segregation.
- 4.7.3.1.1.1. **Moderate**. Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F.
- 4.7.3.1.1.2. Severe. Any areas that have a temperature differential greater than 50°F.
- 4.7.3.1.2. **Thermal Imaging System**. Review the output results when a thermal imaging system is used, and provide the automated report described in <u>Tex-244-F</u> to the Engineer daily, unless otherwise directed. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system.

The Engineer may suspend paving operations if the Contractor cannot successfully modify the paving process to eliminate recurring severe thermal segregation. Density profiles are not required and not applicable when using a thermal imaging system.

Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots daily or as requested by the Engineer.

4.7.3.1.3. **Thermal Camera**. Provide the Engineer with the thermal profile of every sublot within 1 working day of the completion of each lot. When requested by the Engineer, provide the thermal images generated using the thermal camera. Report the results of each thermal profile in accordance with Section 344.4.2., "Reporting and Responsibilities." The Engineer will use a handheld thermal camera to obtain a thermal profile at least once per project.

Take immediate corrective action to eliminate recurring moderate thermal segregation when a handheld thermal camera is used.

Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet

the requirements of this Section. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that contains severe thermal segregation. Evaluate areas with severe thermal segregation by performing density profiles in accordance with Section 344.4.9.3.3.3., "Segregation (Density Profile)." Remove and replace the material in any areas that have severe thermal segregation and a failing result for segregation (density profile) unless otherwise directed. The sublot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

- 4.7.3.2. **Windrow Operations**. Operate windrow pickup equipment so that when hot mix is placed in windrows, substantially all the mixture deposited on the roadbed is picked up and loaded into the paver.
- 4.7.3.3. Hauling Equipment. Use belly dump, live-bottom, or end dump trucks to haul and transfer mixture. Except for paving miscellaneous areas, end dump trucks are allowed only when used in conjunction with an MTD with remixing capability, or when a thermal imaging system is used, unless otherwise approved.
- 4.7.3.4. **Screed Heaters**. Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 344.4.9.3.3.5., "Recovered Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.
- 4.8. **Compaction**. Compact the pavement uniformly to contain between 3.7% and 7.5% in-place air voids. Take immediate corrective action to bring the operation within 3.7% and 7.5% when the in-place air voids exceed the range of these tolerances. The Engineer will allow paving to resume when the proposed corrective action is likely to yield between 3.7% and 7.5% in-place air voids.

Obtain cores in areas placed under exempt production, as directed, at locations determined by the Engineer. The Engineer may test these cores and suspend operations or require removal and replacement if the in-place air voids are less than 2.7% or more than 9.0%. Areas defined in Section 344.4.9.3.1.4., "Miscellaneous Areas," are not subject to in-place air void determination.

Furnish the type, size, and number of rollers necessary to ensure desired compaction. Use additional rollers as required to remove any roller marks. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

Use the control strip method in accordance with <u>Tex-207-F</u>, Part IV, on the first day of production to establish the rolling pattern that will produce the desired in-place air voids, unless otherwise directed.

Use tamps to thoroughly compact the edges of the pavement along curbs, headers, and similar structures and in locations that will not allow thorough compaction using rollers. The Engineer may require rolling using a trench roller on widened areas, in trenches, and in other limited areas.

Complete all compaction operations using breakdown rollers before the pavement temperature drops below 180°F, unless otherwise allowed. Compaction using a pneumatic or light finish roller operated in static mode is allowed for pavement temperatures above 160°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic, unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

4.9. Acceptance Plan. Payment adjustments for the material will be in accordance with Article 344.6., "Payment."

Sample and test the hot mix on a lot-and-sublot basis. Suspend production if the production payment factor in accordance with Section 344.6.1., "Production Payment Adjustment Factors," or the placement payment factor in accordance with Section 344.6.2., "Placement Payment Adjustment Factors," for two consecutive

lots is below 1.000. Resume production once test results or other information indicates to the satisfaction of the Engineer that the next material produced or placed will result in payment factors of at least 1.000.

4.9.1. **Referee Testing**. The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if a "remove and replace" condition is determined based on the Engineer's test results, or if the differences between Contractor and Engineer test results exceed the maximum allowable difference in accordance with Table 11 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within 5 working days after receiving test results and cores from the Engineer. Referee tests will be performed only on the sublot in question and only for the tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to be reported. The Department may require the Contractor to reimburse the Department for referee tests if more than three referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

The Materials and Tests Division will determine the laboratory-molded density based on the molded specific gravity and the maximum theoretical specific gravity of the referee sample. The in-place air voids will be determined based on the bulk-specific gravity of the cores, as determined by the referee laboratory, and the Engineer's average maximum theoretical specific gravity for the lot. Except for "remove and replace" conditions, referee test results are final and will establish payment adjustment factors for the sublot in question. The Contractor may decline referee testing and accept the Engineer's test results when the placement payment adjustment factor for any sublot results in a "remove and replace" condition. Placement sublots subject to be removed and replaced will be further evaluated in accordance with Section 344.6.2.2., "Placement Sublots Subject to Removal and Replacement."

4.9.2. **Production Acceptance**.

4.9.2.1. **Production Lot**. A production lot consists of four equal sublots. The default quantity for Lot 1 is 1,000 ton; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 4,000 ton. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately three–four sublots are produced each day. The lot size will be between 1,000 ton and 4,000 ton. The Engineer may change the lot size before the Contractor begins any lot.

If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform <u>Tex-226-F</u> on Lot 1 to confirm the indirect tensile strength does not exceed 200 psi. Take corrective action to bring the mixture within specification compliance if the indirect tensile strength exceeds 200 psi, unless otherwise directed.

4.9.2.1.1. **Incomplete Production Lots.** If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Adjust the payment for the incomplete lot in accordance with Section 344.6.1., "Production Payment Adjustment Factors." Close all lots within 5 working days unless otherwise allowed.

4.9.2.2. Production Sampling.

- 4.9.2.2.1. Mixture Sampling. The Engineer will perform or witness the sampling of production sublots from trucks at the plant in accordance with <u>Tex-222-F</u>. The sampler will split each sample into three equal portions in accordance with <u>Tex-200-F</u> and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" until the Department's testing is completed.
- 4.9.2.2.1.1. **Random Sample**. At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with <u>Tex-225-F</u>. Take one sample for each sublot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.

For one sublot per lot, the Contractor must obtain from the Engineer a "blind" production sample collected by the Engineer. If desired, the Contractor may witness the collection of blind samples. Test either the "blind" or the random sample; however, referee testing for the sublot (if applicable) will be based on a comparison of results from the "blind" sample.

4.9.2.2.2 Asphalt Binder Sampling. The Engineer will witness the Contractor obtain a 1-qt. sample of the asphalt binder for each lot of mixture produced. The Contractor will notify the Engineer when the sampling will occur. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with <u>Tex-500-C</u>, Part II. Label the can with the corresponding lot and sublot numbers, producer name, producer facility, grade, District, date sampled, all applicable bills of lading (if available), and project information, including highway and CSJ number. The Engineer will retain these samples for 1 yr. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample and upon request of the Contractor, the Engineer will split a sample of the asphalt binder with the Contractor.

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to the Materials and Tests Division to verify accordance with Item 300, and will retain the other split sample for 1 yr.

4.9.2.3. **Production Testing**. The Contractor and Engineer must perform production tests shown in Table 16. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances shown in Table 11 for all sublots.

Take immediate corrective action if the Engineer's laboratory-molded density on any sublot is less than 95.0% or greater than 97.0% to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

The Engineer may allow alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that <u>Tex-236-F</u>, Part I does not yield reliable results. Provide evidence that results from <u>Tex-236-F</u>, Part I are not reliable before requesting permission to use an alternate method unless otherwise directed. Use the applicable test procedure as directed if an alternate test method is allowed.

	Production and Placement Testing Frequency				
	Description	Test Method	Min Contractor	Min Engineer	
	Individual % retained on #8 sieve and larger	Tox 200 E	Testing Frequency	Testing Frequency	
	Individual % retained on sieves smaller than #8 and larger than #200	<u>Tex-200-F</u> or	1 per sublot	1 per 12 sublots ¹	
	% passing the #200 sieve	<u>Tex-236-F</u>			
	Laboratory-molded density Laboratory-molded bulk specific gravity	<u>Tex-207-F</u>	_	1 per sublot ¹	
	In-place air voids	T 004 F			
	VMA Segregation (density profile)	<u>Tex-204-F</u> <u>Tex-207-F</u> , Part V	1 per sublot ²	1 per project	
	Longitudinal joint density	<u>Tex-207-F</u> , Part VII	1 per sublot ³	1 per project	
	Moisture content	<u>Tex-212-F</u> , Part II	When directed	1 per project	
	Theoretical Max specific (Rice) gravity	Tex-227-F	When directed	1 per sublot ¹	
	Asphalt binder content	Tex-236-F	1 per sublot	1 per lot ¹	
	Thermal profile	Tex-244-F	1 per sublot ²	i per lot	
	Hamburg wheel test	Tex-242-F	-	_	
	Deleterious in Recycled Asphalt Shingles (RAS) ⁴	Tex-217-F, Part III	_	_	
	Asphalt binder sampling and testing ^{4,5}	Tex-500-C, Part II	_	1 per project	
	Tack coat sampling and testing	Tex-500-C, Part III	_		
	Boil test ⁶	<u>Tex-530-C</u>	1 per lot	_	
	Shear bond strength test ⁷	Tex-249-F	-		
4.9.2.4.	 approved. To be performed in the presence of the Engi Testing performed by the Materials and Test Sampling performed by the Contractor. The When shown on the plans. Testing performed by the Materials and Test by the Contractor within the first four lots of t Operational Tolerances . Control the product Table 11. When production is suspended, the other information indicates the next mixture plane.	s Division or designated Engineer will witness sar s Division or District for i he project. tion process within the Engineer will allow pr	npling and retain the san nformational purposes or operational tolerances oduction to resume wh	a sample obtained s shown in nen test results or	
4.9.2.4.1.	Gradation . Suspend operation and take corresize shown in Table 8. A sublot is defined as a results are out of operational tolerance. Suspering operational tolerances shown in Table 11 for a consecutive sublots on any sieve unless othe one lot.	out of tolerance if eithe end production when t three consecutive sub	er the Engineer's or the est results for gradatio lots on the same sieve	e Contractor's test n exceed the or four	
4.9.2.4.2.	Asphalt Binder Content. A sublot is defined Contractor's test results exceed the values sh adjustments greater than 1.000 will be paid fo binder content. Suspend production and shipr binder content deviates from the current JMF	own in Table 11. No p or any sublot that is our ment of the mixture if t	production or placemen t of operational toleran he Engineer's or the C	t payment ce for asphalt	
4.9.2.4.3.	VMA. The Engineer will determine the VMA for determine asphalt binder content, the Engineer performed by the Contractor to determine VM	er will use the asphalt			
	Take immediate compative patient if the V/MA	value for any aublatio	less then the uninimum	V/MA requirement	

Table 16 Production and Placement Testing Frequency

Take immediate corrective action if the VMA value for any sublot is less than the minimum VMA requirement for production shown in Table 8. Suspend production and shipment of the mixture if the Engineer's VMA

results on two consecutive sublots are below the minimum VMA requirement for production shown in Table 8. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that does not meet the minimum VMA requirement for production shown in Table 8 based on the Engineer's VMA determination.

Suspend production and shipment of the mixture if the Engineer's VMA result is more than 0.5% below the minimum VMA requirement for production shown in Table 8. In addition to suspending production, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment.

4.9.2.4.4. **Hamburg Wheel Test**. The Engineer may perform a Hamburg wheel test on plant-produced mixture anytime during production. Suspend production until further Hamburg wheel tests meet the specified values when the production samples fail the Hamburg wheel test criteria shown in Table 10. The Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test to be removed and replaced at the Contractor's expense.

If the Department-approved laboratory's Hamburg wheel test on plant-produced mixture results in a "remove and replace" condition, the Contractor may request that the Materials and Tests Division determine the final disposition of the material in question by re-testing the failing material.

4.9.2.5. Individual Loads of Hot Mix. The Engineer may reject individual truckloads of hot mix. When a load of hot mix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances shown in Table 11, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.3. Placement Acceptance.

- 4.9.3.1. **Placement Lot**. A placement lot consists of four placement sublots. A placement sublot consists of the area placed during a production sublot.
- 4.9.3.1.1. Lot 1 Placement. Placement payment adjustments greater than 1.000 for Lot 1 will be in accordance with Section 344.6.2., "Placement Payment Adjustment Factors"; however, no placement adjustment less than 1.000 will be assessed for any sublot placed in Lot 1 when the in-place air voids are greater than or equal to 2.7% and less than or equal to 9.0%. Remove and replace any sublot with in-place air voids less than 2.7% or greater than 9.0%.
- 4.9.3.1.2. Incomplete Placement Lots. An incomplete placement lot consists of the area placed as described in Section 344.4.9.2.1.1., "Incomplete Production Lots," excluding areas defined in Section 344.4.9.3.1.4., "Miscellaneous Areas." Placement sampling is required if the random sample plan for production resulted in a sample being obtained from an incomplete production sublot.
- 4.9.3.1.3. **Shoulders, Ramps, Etc.** Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are subject to in-place air void determination and payment adjustments unless shown on the plans as not eligible for in-place air void determination. Intersections may be considered miscellaneous areas when determined by the Engineer.
- 4.9.3.1.4. **Miscellaneous Areas**. Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations, such as temporary detours, driveways, mailbox turnouts, crossovers, gores, spot level-up areas, pavement repair sections less than 300 ft., and other similar areas. Temporary detours are subject to in-place air void determination when shown on the plans. Miscellaneous areas also include level-ups and thin overlays when the layer thickness shown on the plans is less than the minimum untrimmed core height eligible for testing in accordance with Table 13. The specified layer thickness is based on the rate of 110 lb. per square yard for each inch of pavement unless another rate is shown on the plans. When "Level Up" is listed as part of the item bid description code, a payment adjustment factor of 1.000 will

be assigned for all placement sublots as described in Article 344.6., "Payment." Miscellaneous areas are not eligible for random placement sampling locations. Compact miscellaneous areas in accordance with Section 344.4.8., "Compaction." Miscellaneous areas are not subject to in-place air void determination, thermal profiles testing, segregation (density profiles), or longitudinal joint density evaluations.

4.9.3.2. **Placement Sampling**. The Engineer will select random numbers for all placement sublots at the beginning of the project. The Engineer will provide the Contractor with the placement random numbers only immediately after the sublot is completed. Mark the roadway location at the completion of each sublot and record the station number. Determine one random sample location for each placement sublot in accordance with <u>Tex-225-F</u>. Adjust the random sample location by no more than necessary to achieve a 2-ft. clearance if the location is within 2 ft. of a joint or pavement edge.

Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are always eligible for selection as a random sample location; however, if a random sample location falls on one of these areas and the area is designated on the plans as not subject to in-place air void determination, cores will not be taken for the sublot and a 1.000 pay factor will be assigned to that sublot.

Provide the equipment and means to obtain and trim roadway cores onsite. Onsite is defined as in close proximity to where the cores are taken. Obtain the cores within 1 working day of the time the placement sublot is completed, unless otherwise approved. Obtain two 6-in. diameter cores side-by-side from within 1 ft. of the random location provided for the placement sublot. Mark the cores for identification, measure and record the untrimmed core height, and provide the information to the Engineer. The Engineer will witness the coring operation and measurement of the core thickness. Visually inspect each core and verify that the current paving layer is bonded to the underlying layer. Take corrective action if an adequate bond does not exist between the current and underlying layer to ensure that an adequate bond will be achieved during subsequent placement operations.

Trim the cores immediately after obtaining them from the roadway in accordance with <u>Tex-251-F</u> if the core heights meet the minimum untrimmed value shown in Table 13. Trim the cores onsite in the presence of the Engineer. Use a permanent marker or paint pen to record the lot and sublot numbers on each core, as well as the designation as Core A or Core B. The Engineer may require additional information to be marked on the core and may choose to sign or initial the core. The Engineer will take custody of the cores immediately after witnessing the trimming of the cores and will retain custody of the cores until the Department's testing is completed. Before turning the trimmed cores over to the Engineer, the Contractor may wrap the trimmed cores or secure them in a manner that will reduce the risk of possible damage occurring during transport by the Engineer. After testing, the Engineer will return the cores to the Contractor.

The Engineer may have the cores transported back to the Department's laboratory at the HMA plant via the Contractor's haul truck or other designated vehicle. In such cases where the cores will be out of the Engineer's possession during transport, the Engineer will use Department-provided security bags and the roadway core custody protocol located on the Department's website to provide a secure means and process that protects the integrity of the cores during transport.

Decide whether to include the pair of cores in the air void determination for that sublot if the core height before trimming is less than the minimum untrimmed value in accordance with Table 13. Trim the cores as described in the preceding paragraphs before delivering to the Engineer if electing to have the cores included in the air void determination. If electing to not have the cores included in air void determination, inform the Engineer of the decision and deliver untrimmed cores to the Engineer. The placement pay factor for the sublot will be 1.000 if cores will not be included in air void determination.

Instead of the Contractor trimming the cores onsite immediately after coring, the Engineer and the Contractor may mutually agree to have the trimming operations performed at an alternate location, such as a field laboratory or other similar location. In such cases, the Engineer will take possession of the cores immediately after they are obtained from the roadway and will retain custody of the cores until testing is completed. Either

the Department or Contractor representative may perform trimming of the cores. The Engineer will witness all trimming operations in cases where the Contractor representative performs the trimming operation.

Dry the core holes and tack the sides and bottom immediately after obtaining the cores. Fill the hole with the same type of mixture, and properly compact the mixture. Repair core holes using other methods when approved.

- 4.9.3.3. **Placement Testing**. Perform placement tests in accordance with Table 16. After the Engineer returns the cores, the Contractor may test the cores to verify the Engineer's test results for in-place air voids. The allowable differences between the Contractor's and Engineer's test results are shown in Table 11.
- 4.9.3.3.1. In-Place Air Voids. The Engineer will measure in-place air voids in accordance with <u>Tex-207-F</u> and <u>Tex-227-F</u>. Before drying to a constant weight, cores may be pre-dried using a CoreDry or similar vacuum device to remove excess moisture. The Engineer will average the values obtained for all sublots in the production lot to determine the theoretical maximum specific gravity. The Engineer will use the average air void content for in-place air voids.

The Engineer will use the vacuum method to seal the core if required in accordance with <u>Tex-207-F</u>. The Engineer will use the test results from the unsealed core to determine the placement payment adjustment factor if the sealed core yields a higher specific gravity than the unsealed core. After determining the in-place air void content, the Engineer will return the cores and provide test results to the Contractor.

- 4.9.3.3.2. Informational Shear Bond Strength Testing. The Engineer will select one random sublot within the first four lots of the project for shear bond strength testing. Obtain full-depth cores in accordance with <u>Tex-249-F</u> unless the HMA is being placed directly on concrete pavement. Label the cores with lot and sublot numbers, and provide to the Engineer. Inspector must use pertinent Department form to document the CSJ number, producer of the tack coat, mix type, and shot rate. The Engineer will ship the cores to the Materials and Tests Division or District laboratory for shear bond strength testing. Results from these tests will not be used for specification compliance.
- 4.9.3.3.3. Segregation (Density Profile). Test for segregation using density profiles in accordance with <u>Tex-207-F</u>, Part V. Density profiles are not required and are not applicable when using a thermal imaging system. Density profiles are not applicable in areas described in Section 344.4.9.3.1.4., "Miscellaneous Areas."

Perform at least one density profile per sublot. Perform additional density profiles when any of the following conditions occur, unless otherwise approved.

- Areas that are identified by either the Contractor or the Engineer with severe thermal segregation.
- Any visibly segregated areas that exist.
- The paver stops due to lack of material being delivered to the paving operations and the temperature of the uncompacted mat before the initial breakdown rolling is lower than the temperatures shown in Table 17.

min oncompacted mat remperature Requiring Segregation Frome			
High-Temperature Binder Grade ²	Min Temperature of Uncompacted Mat Allowed Before Initial Breakdown Rolling ^{3,4,5} (°F)		
PG 64	<250		
PG 70	<260		
PG 76	<270		

Table 17 Min Uncompacted Mat Temperature Requiring Segregation Profile¹

1. Applicable only to paver stops that occur due to lack of material being delivered to the paving operations and when not using a thermal imaging system.

2. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

The surface of the uncompacted mat must be measured using a handheld thermal 3. camera or infrared thermometer.

4. Min uncompacted mat temperature requiring a segregation profile may be reduced 20°F if using a chemical WMA additive as a compaction aid, MTD with remixing capabilities, or paver hopper insert with remixing capabilities.

5. When using WMA, the Min uncompacted mat temperature requiring a segregation profile is 215°F.

Provide the Engineer with the density profile of every sublot in the lot within 1 working day of the completion of each lot. Report the results of each density profile in accordance with Section 344.4.2., "Reporting and Responsibilities."

The density profile is considered failing if it exceeds the tolerances shown in Table 18. When a thermal imaging system is not used, the Engineer will measure the density profile at least once per project. The Engineer's density profile results will be used when available. The Engineer may require the Contractor to remove and replace the area in guestion if the area fails the density profile and has surface irregularities as defined in Section 344.4.9.3.3.6., "Irregularities." The sublot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

Investigate density profile failures and take corrective actions during production and placement to eliminate the segregation. Suspend production if two consecutive density profiles fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Segregation (Density Profile) Acceptance Criteria					
Max Allowable Max Allowable					
Mixture Type Density Range Density Range					
(Highest to Lowest) (Average to Lowest)					
SP-B	8.0 pcf	5.0 pcf			
SP-C & SP-D	6.0 pcf	3.0 pcf			

Table 18

4.9.3.3.4. Longitudinal Joint Density.

- 4.9.3.3.4.1. Informational Tests. Perform joint density evaluations while establishing the rolling pattern and verify that the joint density is no more than 3.0 pcf below the density taken at or near the center of the mat. Adjust the rolling pattern, if needed, to achieve the desired joint density. Perform additional joint density evaluations, at least once per sublot, unless otherwise directed.
- 4.9.3.3.4.2. Record Tests. Perform a joint density evaluation for each sublot at each pavement edge that is or will become a longitudinal joint. Joint density evaluations are not applicable in areas described in Section 344.4.9.3.1.4., "Miscellaneous Areas." Determine the joint density in accordance with Tex-207-F, Part VII. Record the joint density information and submit results on Department forms to the Engineer. The evaluation is considered failing if the joint density is more than 3.0 pcf below the density taken at the core random sample location and the correlated joint density is less than 90.0%. The Engineer will make independent joint density verification at least once per project and may make independent joint density

verifications at the random sample locations. The Engineer's joint density test results will be used when available.

Provide the Engineer with the joint density of every sublot in the lot within 1 working day of the completion of each lot. Report the results of each joint density in accordance with Section 344.4.2., "Reporting and Responsibilities."

Investigate joint density failures and take corrective actions during production and placement to improve the joint density. Suspend production if the evaluations on two consecutive sublots fail, unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

- 4.9.3.3.5. **Recovered Asphalt Dynamic Shear Rheometer (DSR)**. The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high-temperature PG of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with <u>Tex-211-F</u>.
- 4.9.3.3.6. **Irregularities**. Identify and correct irregularities, including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities. The Engineer may also require the Contractor to remove and replace (at the Contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than 1 day while the Contractor is taking appropriate corrective action.

- 4.9.4. **Exempt Production**. The mixture may be deemed as exempt production when mutually agreed between the Engineer and the Contractor or when shown on the plans. Exempt production may be used for the following conditions.
 - Anticipated daily production is less than 500 ton.
 - Total production for the project is less than 5,000 ton.
 - Pavement repair sections are equal to or greater than 300 ft. For pavement repair sections less than 300 ft., refer to Section 344.4.9.3.1.4., "Miscellaneous Areas."

Exempt production is not eligible for referee testing. For exempt production, the Contractor is relieved of all production and placement QC and QA sampling and testing requirements, except for coring operations when required by the Engineer. When mutually agreed between the Engineer and the Contractor, production sampling will be allowed at the point of delivery. When 100 ton or more per day is produced, the Engineer must perform acceptance tests for production and placement shown in Table 16. If the specification requirements listed below are met, the production and placement pay factors are 1.000.

- Produce, haul, place, and compact the mixture in accordance with the Specification and as directed.
- Control mixture production must yield a laboratory-molded density that is within ±1.0% of the target laboratory-molded density as tested by the Engineer.
- Compact the mixture in accordance with Section 344.4.8., "Compaction."
- When a thermal imaging system is not used, the Engineer may perform segregation (density profiles) and thermal profiles in accordance with the specification; and

- Complete all other specification requirements.
- 4.9.5. **Ride Quality**. Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

- 5.1. **Superpave Mixtures**. Hot mix will be measured by the ton of composite hot mix, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment."
- 5.2. **Tack Coat**. Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measured by the gallon applied.

The Engineer may allow the use of a metering device to determine asphalt volume used and application rate if the device is accurate within 1.5% of the strapped volume.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Section 344.5.1., "Superpave Mixtures," will be paid for at the unit price bid for "Superpave Mixtures" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 344.5.2., "Tack Coat," will be paid for at the unit price bid for "Tack Coat" of the tack coat provided. These prices are full compensation for materials, placement, equipment, labor, tools, and incidentals. Payment adjustments will be applied as determined in accordance with this Item; however, a payment adjustment factor of 1.000 will be assigned for all placement sublots for level-ups only when "Level Up" is listed as part of the bid item description. A payment adjustment factor of 1.000 will be assigned to all production and placement sublots when "Exempt" is listed as part of the bid item description, and all testing requirements are met.

Payment for each sublot, including applicable payment adjustments greater than 1.000, will be paid only for sublots when the Contractor supplies the Engineer with the required documentation for production and placement QC and QA, thermal profiles, segregation density profiles, and longitudinal joint densities in accordance with Section 344.4.2., "Reporting and Responsibilities." When a thermal imaging system is used, documentation is not required for thermal profiles or segregation density profiles on individual sublots; however, the thermal imaging system automated reports in accordance with Tex-244-F are required.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585.

6.1. **Production Payment Adjustment Factors**. The production payment adjustment factor is based on the laboratory-molded density using the Engineer's test results. The bulk-specific gravities of the samples from each sublot will be divided by the Engineer's maximum theoretical specific gravity for the sublot. The individual sample densities for the sublot will be averaged to determine the production payment adjustment factor shown in Table 19 for each sublot, using the deviation from the target laboratory-molded density shown in Table 9. The production payment adjustment factor for completed lots will be the average of the payment adjustment factors for the four sublots sampled within that lot.

Absolute Deviation from Production Payment Adjustment F			
Target Laboratory-Molded Density	(Target Laboratory-Molded Density)		
0.0	1.075		
0.1	1.075		
0.2	1.075		
0.3	1.066		
0.4	1.057		
0.5	1.047		
0.6	1.038		
0.7	1.029		
0.8	1.019		
0.9	1.010		
1.0	1.000		
1.1	0.900		
1.2	0.800		
1.3	0.700		
>1.3	Remove and replace		

Table 19
Production Payment Adjustment Factors for Laboratory-Molded Density¹
Abachuta Deviation from Production Production

 If the Engineer's laboratory-molded density on any sublot is <95.0% or >97.0%, take immediate corrective action to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

6.1.1. **Payment for Incomplete Production Lots**. Production payment adjustments for incomplete lots, described under Section 344.4.9.2.1.1., "Incomplete Production Lots," will be calculated using the average production payment factors from all sublots sampled.

A production payment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any samples within the first sublot.

- 6.1.2. **Production Sublots Subject to Removal and Replacement**. If after referee testing the laboratory-molded density for any sublot results in a "remove and replace" condition as shown in Table 19, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment. The Engineer may also accept the sublot in accordance with Section 5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.
- 6.2. **Placement Payment Adjustment Factors**. The placement payment adjustment factor is based on in-place air voids using the Engineer's test results. The bulk-specific gravities of the cores from each sublot will be divided by the Engineer's average maximum theoretical specific gravity for the lot. The individual core densities for the sublot will be averaged to determine the placement payment adjustment factor shown in Table 20 for each sublot that requires in-place air void measurement. A placement payment adjustment factor of 1.000 will be assigned to the entire sublot when the random sample location falls in an area shown on the plans as not subject to in-place air void determination. A placement payment adjustment factor of 1.000 will be assigned to quantities placed in areas described in Section 344.4.9.3.1.4., "Miscellaneous Areas." The placement payment adjustment factor for completed lots will be the average of the placement payment adjustment factors for up to four sublots within that lot.

Placement Payment Adjustment Factors for In-Place Air Voids					
In-Place	Placement Payment	In-Place	Placement Payment		
Air Voids	Adjustment Factor	Air Voids	Adjustment Factor		
<2.7	Remove and replace	5.9	1.048		
2.7	0.710	6.0	1.045		
2.8	0.740	6.1	1.042		
2.9	0.770	6.2	1.039		
3.0	0.800	6.3	1.036		
3.1	0.830	6.4	1.033		
3.2	0.860	6.5	1.030		
3.3	0.890	6.6	1.027		
3.4	0.920	6.7	1.024		
3.5	0.950	6.8	1.021		
3.6	0.980	6.9	1.018		
3.7	1.000	7.0	1.015		
3.8	1.015	7.1	1.012		
3.9	1.030	7.2	1.009		
4.0	1.045	7.3	1.006		
4.1	1.060	7.4	1.003		
4.2	1.075	7.5	1.000		
4.3	1.075	7.6	0.980		
4.4	1.075	7.7	0.960		
4.5	1.075	7.8	0.940		
4.6	1.075	7.9	0.920		
4.7	1.075	8.0	0.900		
4.8	1.075	8.1	0.880		
4.9	1.075	8.2	0.860		
5.0	1.075	8.3	0.840		
5.1	1.072	8.4	0.820		
5.2	1.069	8.5	0.800		
5.3	1.066	8.6	0.780		
5.4	1.063	8.7	0.760		
5.5	1.060	8.8	0.740		
5.6	1.057	8.9	0.720		
5.7	1.054	9.0	0.700		
5.8	1.051	>9.0	Remove and replace		

 Table 20

 Placement Payment Adjustment Factors for In-Place Air Voids

6.2.1. **Payment for Incomplete Placement Lots**. Payment adjustments for incomplete placement lots described under Section 344.4.9.3.1.2., "Incomplete Placement Lots," will be calculated using the average of the placement pay factors from all sublots sampled and sublots where the random location falls in an area shown on the plans as not eligible for in-place air void determination.

If the random sampling plan results in production samples, but not in placement samples, the random core location and placement adjustment factor for the sublot will be determined by applying the placement random number to the length of the sublot placed.

If the random sampling plan results in placement samples, but not in production samples, no placement adjustment factor will apply for that sublot placed.

A placement payment adjustment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any production samples.

6.2.2. **Placement Sublots Subject to Removal and Replacement.** If after referee testing the placement payment adjustment factor for any sublot results in a "remove and replace" condition as listed in Table 20, the Engineer will choose the location of two cores to be taken within 3 ft. of the original failing core location. The Contractor must obtain the cores in the presence of the Engineer. The Engineer will take immediate possession of the untrimmed cores and submit the untrimmed cores to the Materials and Tests Division,

where they will be trimmed, if necessary, and tested for bulk-specific gravity within 10 working days of receipt.

The bulk-specific gravity of each core from each sublot will be divided by the Engineer's average maximum theoretical specific gravity for the lot. The individual core densities for the sublot will be averaged to determine the new payment adjustment factor of the sublot in question. If the new payment adjustment factor is 0.700 or greater, the new payment adjustment factor will apply to that sublot. If the new payment adjustment factor will be made for the sublot. Remove and replace the failing sublot, or the Engineer may allow the sublot to be left in place without payment. The Engineer may also accept the sublot in accordance with Section 5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.

6.3. **Total Adjusted Pay (TAP) Calculation**. TAP will be based on the applicable payment adjustment factors for production and placement for each lot.

TAP = (A+B)/2

where:

A = Bid price × production lot quantity × average payment adjustment factor for the production lot B = Bid price × placement lot quantity × average payment adjustment factor for the placement lot + (bid price × quantity placed in miscellaneous areas × 1.000)

Production lot quantity = Quantity actually placed - quantity left in place without payment

Placement lot quantity = Quantity actually placed - quantity left in place without payment - quantity placed in miscellaneous areas.

Item 346 Stone-Matrix Asphalt

346

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) pavement layer composed of compacted stone-matrix asphalt (SMA) or stone-matrix asphalt rubber (SMAR) mixture of aggregate, asphalt binder, and additives mixed hot in a mixing plant. Payment adjustments will apply to HMA in accordance with this Specification unless the HMA is deemed exempt in accordance with Section 346.4.9.4., "Exempt Production."

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met and document all material source changes when the Contractor makes a source or formulation change. The Engineer may sample and test project materials anytime during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. Aggregate. Furnish aggregates from sources that conform to the requirements shown in Table 1 and this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse, intermediate, or fine aggregate. Aggregate from reclaimed asphalt pavement (RAP) is not required to meet requirements shown in Table 1 unless otherwise shown on the plans. Supply aggregates that meet the definitions in Tex-100-E for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests in accordance with Table 1. Document all test results in the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis in accordance with Tex-200-F, Part II.
- 2.1.1. **Coarse Aggregate**. Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for HMA listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in HMA.

For sources not listed in the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance;
- allow 30 calendar days for the Engineer to sample, test, and report results;
- use only when tested and approved; and
- once approved, do not add additional material to the stockpile unless otherwise allowed by the Engineer.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements apply only to aggregates used on the surface of travel lanes, unless otherwise shown on the plans. The SAC for

sources in the Department's Aggregate Quality Monitoring Program (AQMP) (<u>Tex-499-A</u>) is listed in the BRSQC.

2.1.1.1 Blending Class A and Class B Aggregates. Class B aggregate meeting all other requirements shown in Table 1 may be blended with a Class A aggregate to meet requirements for Class A materials, unless otherwise shown on the plans. When blending Class A and Class B aggregates to meet a Class A requirement, ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source, unless otherwise shown on the plans. Blend by volume if the bulk-specific gravities of the Class A and Class B aggregates differ by more than 0.300. Coarse aggregate from RAP and recycled asphalt shingles (RAS) will be considered as Class B aggregate for blending purposes. Class B aggregate may be disallowed when shown on the plans.

The Engineer may perform tests anytime during production, when the Contractor blends Class A and Class B aggregates to meet a Class A requirement. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks to verify the percent of Class A aggregate retained on the No. 4 sieve. The Engineer will use the gradations supplied by the Contractor in the mixture design report as an input for the template. A failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2. **Micro-Deval Abrasion**. The Engineer will perform at least one Micro-Deval abrasion test in accordance with <u>Tex-461-A</u> for each coarse aggregate source used in the mixture design that has a rated source soundness magnesium (RSSM) loss value greater than 15 as listed in the BRSQC. The Engineer will perform testing before the start of production and may perform additional testing anytime during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

Mg_{est}= (RSSM)/(MD_{act}/RSMD)

where:

 $Mg_{est.}$ = magnesium sulfate soundness loss RSSM = rated source soundness magnesium $MD_{act.}$ = actual Micro-Deval percent loss RSMD = rated source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Materials and Tests Division, and additional testing may be required before granting approval.

- 2.1.2. Intermediate Aggregate. Aggregates not meeting the definition of coarse or fine aggregate will be defined as intermediate aggregate. Supply intermediate aggregates, when used, that are free of organic impurities. Supply intermediate aggregate from coarse aggregate sources, when used that meet the requirements shown in Table 1, unless otherwise approved.
- 2.1.3. **Fine Aggregate**. Fine aggregates consist of manufactured sands, screenings, and field sands. Fine aggregate stockpiles must meet the fine aggregate properties in accordance with Table 1 and the gradation requirements in accordance with Table 2. Supply fine aggregates that are free of organic impurities. The Engineer may test the fine aggregate in accordance with <u>Tex-408-A</u> to verify the material is free of organic impurities. Unless otherwise shown on the plans, at most 15% of the total aggregate may be field sand or

other uncrushed fine aggregate. Use fine aggregate, except field sand, from coarse aggregate sources in accordance with Table 1, unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve and verify that it meets the requirements in Table 1 for crushed face count (<u>Tex-460-A</u>) and flat and elongated particles (<u>Tex-280-F</u>).

Aggregate Quality Requirements						
Property	Test Method	Requirement				
Coarse Aggregate						
SAC	Tex-499-A (AQMP)	A ¹				
Deleterious material, %, Max	<u>Tex-217-F</u> , Part I	1.0				
Decantation, %, Max	Tex-217-F, Part II	1.5				
Micro-Deval abrasion, %	<u>Tex-461-A</u>	Note ²				
Los Angeles abrasion, %, Max	<u>Tex-410-A</u>	30				
Magnesium sulfate soundness, 5 cycles, %, Max	<u>Tex-411-A</u>	20				
Crushed face count, ³ %, Min	<u>Tex-460-A</u> , Part I	95				
Flat and elongated particles @ 5:1, %, Max	<u>Tex-280-F</u>	10				
Fine Aggre	Fine Aggregate					
Linear shrinkage, %, Max	Tex-107-E	3				
Sand equivalent, %, Min	<u>Tex-203-F</u>	45 ⁴				
Organic impurities	<u>Tex-408-A</u>	Note 5				

Table 1

1. Surface Aggregate Classification of "A" is required only for surface mixtures, unless otherwise shown on the plans.

2. Used to estimate the magnesium sulfate soundness loss in accordance with Section 346.2.1.1.2., "Micro-Deval Abrasion."

3. Only applies to crushed gravel.

 The Department may perform <u>Tex-252-F</u> on fine aggregates not meeting this Min requirement. Fine aggregates with a methylene blue value of 10.0 mg/g or less may be used.

5. Optional test.

Gradation Requirements for Fine Aggregate			
Sieve Size % Passing by Wt. or Volum			
3/8"	100		
#8	70–100		
#200	0–30		

Table 2 Gradation Requirements for Fine Aggregate

2.2.

Mineral Filler. Mineral filler consists of finely divided mineral matter, such as agricultural lime, crusher fines, hydrated lime, or fly ash. Mineral filler is allowed unless otherwise shown on the plans. Use no more than 2% hydrated lime, unless otherwise shown on the plans. Fly ash may not be used unless otherwise shown on the plans. When shown on the plans, no more than 5% fly ash may be used. Test all mineral fillers except hydrated lime and fly ash in accordance with <u>Tex-107-E</u> to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

- is dry enough, free-flowing, and free of clumps and foreign matter as determined by the Engineer;
- does not exceed 3% linear shrinkage when tested in accordance with <u>Tex-107-E</u>; and
- meets the gradation requirements shown in Table 3, unless otherwise shown on the plans.

Gradation Requirements for Mineral Filler				
Sieve Size % Passing by Wt. or Volume				
100				
#200 55–100				

Table 3

2.3.

Baghouse Fines. Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.

- 2.4. **Asphalt Binder**. Furnish the type and grade of asphalt binder shown on the plans that meets the requirements of Item 300, "Asphalts, Oils, and Emulsions."
- 2.4.1. **Performance-Graded (PG) Binder**. When SMA is specified, provide an asphalt binder with a high-temperature grade of PG 76 and low-temperature grade shown on the plans in accordance with Section 300.2.11., "Performance-Graded Binders."
- 2.4.2. **Asphalt-Rubber (A-R) Binder**. When SMAR is specified, provide A-R binder that meets the Type I or Type II requirements of Section 300.2.10., "Asphalt-Rubber Binders," unless otherwise shown on the plans. Use at least 15.0% by weight of crumb rubber modifier (CRM) that meets the Grade B or Grade C requirements of Section 300.2.8., "Crumb Rubber Modifier," unless otherwise shown on the plans. Provide the Engineer with the A-R binder blend design with the mix design [Job-Mix Formula (JMF) 1] submittal. Provide the Engineer with documentation such as the bill of lading showing the quantity of CRM used in the project unless otherwise directed.
- 2.5. **Tack Coat**. Furnish CSS-1H, SS-1H, emulsified bonding layer, or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300. Specialized tack coat materials listed on the MPL for *Tracking Resistant Asphalt Interlayer* (TRAIL) will be allowed or required when shown on the plans. The Engineer may suspend paving operations until there is adequate coverage. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required in conformance with the manufacturer's recommendation for approved TRAIL products on the MPL.
- 2.6. **Additives**. Use the type of additive specified when shown on the plans. Use the rate of additive specified in conformance with the manufacturer's recommendation. Additives that facilitate mixing and, compaction, or improve the quality of the mixture are allowed when approved. Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.
- 2.6.1. **Fibers**. Provide cellulose or mineral fibers when PG binder is specified. Submit written certification to the Engineer that the fibers proposed for use meet the requirements of <u>DMS-9204</u>, "Fiber Additives for Bituminous Mixtures." Fibers may be pre-blended into the binder at the asphalt supply terminal unless otherwise shown on the plans.

When 3% RAS are used in the mixture, the Contractor may reduce the amount of fibers as specified in Note 2 of Table 8.

- 2.6.2. Lime and Liquid Antistripping Agent. Lime or liquid antistripping agent is required when shown on the plans. When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.
- 2.6.3. Warm-Mix Asphalt (WMA). WMA) is defined as HMA that is produced within a target temperature discharge range of 215°F and 275°F using approved WMA additives or processes from the MPL.

WMA is allowed for use on all projects and is required when shown on the plans. When WMA is required, the maximum placement or target discharge temperature for WMA will be set at a value at or below 275°F.

Department-approved WMA additives or processes may be used to facilitate mixing and compaction of HMA produced at target discharge temperatures above 275°F; however, such mixtures will not be defined as WMA.

2.6.4. **Compaction Aid**. Compaction aid is defined as a Department-approved chemical warm-mix additive, denoted as "chemical additive" on the MPL, that is used to facilitate mixing and compaction of HMA at a discharge temperature greater than 275°F.

Compaction aid is allowed for use on all projects. Compaction aid is required when shown on the plans or as required in Section 346.4.7.1., "Weather Conditions."

Warm-mix foaming processes, denoted as "foaming process" on the MPL, may be used to facilitate mixing and compaction of HMA at target discharge temperatures greater than 275°F; however, warm-mix foaming processes are not defined as a compaction aid.

2.7. Recycled Materials. Use of RAP and RAS is permitted unless otherwise shown on the plans. Use of RAS is restricted to only non-surface mixes unless otherwise shown on the plans. Do not exceed the maximum allowable percentages of RAP and RAS in accordance with Table 4. The allowable percentages in accordance with Table 4 may be decreased or increased when shown on the plans. Determine the asphalt binder content and gradation of the RAP and RAS stockpiles for mixture design purposes in accordance with <u>Tex-236-F</u>, Part I. The Engineer may verify the asphalt binder content of the stockpiles anytime during production. Perform other tests on RAP and RAS when shown on the plans. Asphalt binder from RAP and RAS is designated as recycled asphalt binder. Calculate and ensure that the ratio of the recycled asphalt binder to total binder does not exceed the percentages in accordance with Table 4 during mixture design and HMA production when RAP or RAS are used. Use a separate cold feed bin for each stockpile of RAP and RAS during HMA production.

Surface and non-surface mixes shown in Table 4 are defined as follows, unless otherwise shown on the plans.

- Surface. The final HMA lift placed at the top of the pavement structure.
- Non-Surface. Mixtures placed below an HMA surface mix and less than or equal to 8.0 in. below the riding surface.
- 2.7.1. **RAP**. RAP is salvaged, milled, pulverized, broken, or crushed asphalt pavement. Fractionated RAP is defined as a stockpile that contains RAP material with at least 95.0% passing the 1/2-in. sieve, before burning in the ignition oven, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 1/2-in. screen to fractionate the RAP.

Use of Contractor-owned RAP, including HMA plant waste, is permitted unless otherwise shown on the plans. Department-owned RAP stockpiles are available for the Contractor's use when the stockpile locations are shown on the plans. If Department-owned RAP is available for the Contractor's use, the Contractor may use Contractor-owned fractionated RAP and replace it with an equal quantity of Department-owned RAP. Department-owned RAP generated by required work on the Contractor is available for the Contractor's use when shown on the plans. Perform any necessary tests to ensure Contractor- or Department-owned RAP is appropriate for use. The Department will not perform any tests or assume any liability for the quality of the Department-owned RAP unless otherwise shown on the plans. The Contractor will retain ownership of RAP generated on the project when shown on the plans.

Do not use Department- or Contractor-owned RAP contaminated with dirt or other objectionable materials. Do not use Department- or Contractor-owned RAP if the decantation value exceeds 5% and the plasticity index is greater than eight. Test the stockpiled RAP for decantation in accordance with <u>Tex-406-A</u>, Part I. Determine the plasticity index in accordance with <u>Tex-106-E</u> if the decantation value exceeds 5%. The decantation and plasticity index requirements do not apply to RAP samples with asphalt removed by extraction or ignition.

Do not intermingle Contractor-owned RAP stockpiles with Department-owned RAP stockpiles. Remove unused Contractor-owned RAP material from the project site upon completion of the project. Return unused Department-owned RAP to the designated stockpile location.

2.7.2. RAS is defined as processed asphalt shingle material from manufacturing of asphalt roofing shingles or from re-roofing residential structures. Post-manufactured RAS is processed manufacturer's shingle scrap byproduct. Post-consumer RAS is processed shingle scrap removed from residential structures. Use of post-manufactured RAS or post-consumer RAS (tear-offs) is not permitted in surface mixtures unless otherwise shown on the plans. RAS may be used in non-surface mixtures unless otherwise shown on the plans. RAS may be used in non-surface mixtures unless otherwise shown on the plans. RAS may be used in conjunction with RAP. Comply with all regulatory requirements stipulated for RAS by TCEQ.

Process the RAS by ambient grinding or granulating such that 100% of the particles pass the 3/8-in. sieve when tested in accordance with <u>Tex-200-F</u>, Part I. Perform a sieve analysis on processed RAS material before extraction (or ignition) of the asphalt binder.

Add sand meeting the requirements of Table 1 and Table 2, or fine RAP, to RAS stockpiles if needed to keep the processed material workable. Any stockpile that contains RAS will be considered a RAS stockpile and be limited to no more than 3.0% of the HMA mixture in accordance with Table 4.

Certify compliance of the RAS with <u>DMS-11000</u>, "Evaluating and Using Nonhazardous Recyclable Materials Guidelines." Treat RAS as an established nonhazardous recyclable material if it has not come into contact with any hazardous materials. Use RAS from shingle sources on the MPL. Remove all materials that are not part of the shingle, such as wood, paper, metal, plastic, and felt paper, before use. Determine the deleterious content of RAS material for mixture design purposes in accordance with <u>Tex-217-F</u>, Part III. Do not use RAS if deleterious materials are more than 0.5% of the stockpiled RAS, unless otherwise approved. Submit a sample for approval before submitting the mixture design. The Department will perform the testing for deleterious material of RAS to determine specification compliance.

	Max Allowable Amounts of Recycled Binder, RAP, and RAS							
	Mixture Description and Max Ratio of Recycled Binder Max Allowable Recycled Material ² (%)							
Location		to Total Binder ¹ (%)	Fractionated RAP ²	RAS ³				
	Surface	15.0	20.0	0.0				
	Non-Surface	20.0	25.0	3.0				

1. Combined recycled binder from fractionated RAP and RAS. RAS is not permitted in surface mixtures unless otherwise shown on the plans.

2. Up to 3% RAS may be used as a replacement for fractionated RAP for non-surface mixtures.

Table 4

3. Up to 3% RAS may be used separately or as a replacement for fractionated RAP for non-surface mixtures.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement." When A-R binder is specified, equip the hot-mix plant with an in-line viscosity-measuring device located between the blending unit and the mixing drum. Provide a means to calibrate the asphalt mass flow meter onsite when a meter is used.

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required in accordance with the Specification, the Contractor may perform other quality control (QC) tests as necessary. Anytime during the project, the Engineer may perform production and placement tests as necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. **Certification**. Personnel certified by the Department-approved HMA certification program must conduct all mixture designs, sampling, and testing in accordance with Table 5. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2-certified specialist. Provide Level 1A-certified specialists at the plant during production operations. Provide Level 1B-certified specialists to conduct placement tests. Provide Level AGG101-certified specialists for aggregate testing.

Test Methods, Test Responsibility, and Min Certification Levels							
Test Description	Test Method	Contractor	Engineer	Level ¹			
	gregate and Recycled Mate						
Sampling	<u>Tex-221-F</u>	✓	✓	1A/AGG101			
Dry sieve	<u>Tex-200-F</u> , Part I	✓	✓	1A/AGG101			
Washed sieve	<u>Tex-200-F</u> , Part II	✓	✓	1A/AGG101			
Deleterious material	<u>Tex-217-F</u> , Part I and Part III	~	✓	AGG101			
Decantation	Tex-217-F, Part II	✓	✓	AGG101			
Los Angeles abrasion	Tex-410-A	_	✓	Department			
Magnesium sulfate soundness	Tex-411-A	_	\checkmark	Department			
Micro-Deval abrasion	Tex-461-A	-	✓	AGG101			
Crushed face count	Tex-460-A	✓	✓	AGG101			
Flat and elongated particles	Tex-280-F	✓	✓	AGG101			
Linear shrinkage	Tex-107-E	✓	\checkmark	AGG101			
Sand equivalent	<u>Tex-203-F</u>	✓	✓	AGG101			
Methylene blue test	Tex-252-F		· •	Department			
Bulk-specific gravity	Tex-201-F	 ✓	· · · · · · · · · · · · · · · · · · ·	AGG101			
Organic impurities	Tex-408-A	· ·	· ·	AGG101 AGG101			
			v	AGGIUI			
	phalt Binder and Tack Coa			4.4/4.D			
Asphalt binder sampling	Tex-500-C, Part II	✓ ✓	✓	1A/1B			
Tack coat sampling	Tex-500-C, Part III	✓	\checkmark	1A/1B			
	Mix Design and Verific		1 -	1 -			
Design and JMF changes	<u>Tex-204-F</u>	✓	✓	2			
Mixing	<u>Tex-205-F</u>	✓	✓	2			
Molding (Superpave gyratory compactor [SGC])	<u>Tex-241-F</u>	\checkmark	\checkmark	1A			
Laboratory-molded density	<u>Tex-207-F</u> , Part I and Part VI	~	✓	1A			
Rice gravity	Tex-227-F, Part II	✓	✓	1A			
Ignition oven correction factors ²	Tex-236-F, Part II	✓	✓	1A			
Drain-down	<u>Tex-235-F</u>	✓	\checkmark	1A			
Hamburg wheel test	<u>Tex-242-F</u>	✓ ✓	✓ ✓	1A			
Witnessing mixing of correction factors	<u>Tex-236-F</u> , Part III	_	· •	Department			
Overlay test	<u>Tex-248-F</u>	_	· ✓	Department			
Boil test	Tex-530-C	- -	· ✓	1A			
Boli test	Production Testing		•	IA			
			✓	1.4			
Selecting production random numbers	<u>Tex-225-F</u> , Part I	-		1A			
Mixture sampling	<u>Tex-222-F</u>	✓ ✓	\checkmark	1A/1B			
Molding (SGC)	<u>Tex-241-F</u>	~	~	1A			
Laboratory-molded density	<u>Tex-207-F</u> , Part I and Part VI	~	✓	1A			
Rice gravity	Tex-227-F, Part II	✓	\checkmark	1A			
Gradation and asphalt binder content ²	Tex-236-F, Part I	✓	✓	1A			
Control charts	Tex-233-F	✓	✓	1A			
Moisture content	Tex-212-F, Part II	✓	✓	1A/AGG101			
Hamburg wheel test	<u>Tex-242-F</u>	✓	✓	1A			
Drain-down	Tex-235-F	· ✓	· ✓	1A			
Boil test	Tex-530-C	· ·	· · · · · · · · · · · · · · · · · · ·	1A 1A			
	Tex-211-F		✓ ✓	Department			
Abson recovery		-	✓ ✓				
Overlay test	<u>Tex-248-F</u>	-	v	Department			
	Placement Testing		1	1 (5			
Selecting placement random numbers	Tex-225-F, Part II	-	✓	1B			
In-place air voids	<u>Tex-207-F</u> , Part I and Part VI	~	✓	1A			
n-place density (nuclear method)	Tex-207-F, Part III	~	_	1B			
Establish rolling pattern	Tex-207-F, Part IV	✓	_	1B			
Control charts	Tex-233-F	✓	✓	1A			
	Tex-1001-S	✓	\checkmark	Note ³			
Ride quality measurement							

Table 5 st Methods. Test Responsibility, and Min Certification Leve

Test Description	Test Method	Contractor	Engineer	Level ¹
Longitudinal joint density	Tex-207-F, Part VII	✓	✓	1B
Thermal profile	<u>Tex-244-F</u>	✓	-	1B
Shear bond strength test	<u>Tex-249-F</u>	-	✓	Department

1. Levels 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.

2. Refer to Section 346.4.9.2.3., "Production Testing," for exceptions to using an ignition oven.

3. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when surface test Type B is specified.

4.2. **Reporting and Responsibilities**. Use Department-provided templates to record and calculate all test data, including mixture design, production and placement QC and quality assurance (QA), control charts, thermal profiles, segregation density profiles, and longitudinal joint density. Obtain the current version of the templates from the Department's website or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is as shown in Table 6, unless otherwise approved. The Engineer and the Contractor will immediately report to the other party any test result that requires suspension of production or placement, or a payment adjustment less than 1.000, or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

Reporting Schedule						
Description	Reported By	Reported To	To Be Reported Within			
Production Quality Control						
Gradation ¹		-				
Asphalt binder content ¹						
Laboratory-molded density ²	Contractor	Ensineer	1 working dow of completion of the cyclet			
Moisture content ³	Contractor	Engineer	1 working day of completion of the sublot			
Drain-down ¹						
Boil test ⁴						
	Producti	on Quality Assura	nce			
Gradation ³		•				
Asphalt binder content ³						
Laboratory-molded density ¹						
Hamburg wheel test ^₅	Engineer	Contractor	1 working day of completion of the sublot			
Overlay test⁵	Engineer	Contractor	I working day of completion of the subjot			
Drain-down ³						
Boil test ⁴						
Binder tests ⁵						
	Produc	ction Quality Contro	bl			
In-place air voids ²						
Segregation ¹	Contractor	Engineer	1 working day of the completion of the lot			
Longitudinal joint density ¹	Contractor	Engineer	I working day of the completion of the lot			
Thermal profile ¹						
	Placeme	ent Quality Assurar				
In-place air voids1			1 working day after receiving the trimmed cores ⁶			
Segregation ³	-	0.1.1				
Longitudinal joint density ³	Engineer	Contractor	1 working day of completion of the lot			
Aging ratio ⁵						
Shear bond strength test ⁵			5 working days after receiving the cores			
Payment adjustment summary	Engineer	Contractor	2 working days of performing all required tests and receiving Contractor test data			

Table 6

1. These tests are required on every sublot.

2. Optional test. When performed on split samples, report the results as soon as they become available.

3. To be performed at the frequency shown in Table 13 or as shown on the plans.

4. When shown on the plans.

5. To be reported as soon as the results become available.

6. Two days are allowed if cores cannot be dried to constant weight within 1 day.

The Engineer will use the Department-provided template to calculate all payment adjustment factors for the lot. Sublot samples may be discarded after the Engineer and Contractor sign-off on the payment adjustment summary documentation for the lot.

Use the procedures described in <u>Tex-233-F</u> to plot the results of all QC and QA testing. Update the control charts as soon as test results for each sublot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. Quality Control Plan (QCP). Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Submit a written QCP before the mandatory pre-paving meeting. Receive approval of the QCP before beginning production. Include the following items in the QCP.

- 4.3.1. **Project Personnel**. For project personnel, include:
 - a list of individuals responsible for QC with authority to take corrective action,
 - current contact information for each individual listed, and
 - current copies of certification documents for individuals performing specified QC functions.

4.3.2. Material Delivery and Storage. For material delivery and storage, include:

- the sequence of material processing, delivery, and minimum quantities to assure continuous plant operations;
- aggregate stockpiling procedures to avoid contamination and segregation;
- frequency, type, and timing of aggregate stockpile testing to assure conformance with material requirements before mixture production; and
- procedure for monitoring the quality and variability of asphalt binder.

4.3.3. **Production**. For production, include:

- loader operation procedures to avoid contamination in cold bins;
- procedures for calibrating and controlling cold feeds;
- procedures to eliminate debris or oversized material;
- procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, RAP, RAS, lime, liquid antistrip, compaction aid, foaming process, WMA, and fibers);
- procedures for reporting job control test results; and
- procedures to avoid segregation and drain-down in the silo.
- 4.3.4. **Loading and Transporting**. For loading and transporting, include:
 - type and application method for release agents, and
 - truck-loading procedures to avoid segregation.

4.3.5. Placement and Compaction. For placement and compaction, include:

- proposed agenda for mandatory pre-paving meeting, including date and location;
- proposed paving plan (e.g., production rate, paving widths, joint offsets, and lift thicknesses);
- type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils;
- procedures for the transfer of mixture into the paver while avoiding physical and thermal segregation and preventing material spillage;
- process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality;

- paver operations (e.g., speed, operation of wings, and height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and
- procedures to construct quality longitudinal and transverse joints.

4.4. Mixture Design.

4.4.1. **Design Requirements**. Use the SMA design procedure provided in <u>Tex-204-F</u>, unless otherwise shown on the plans. Design the mixture to meet the requirements shown in Tables 1, 2, 3, 4, 7, 8, and 9.

Design SMA or SMAR mixtures using a Superpave Gyratory Compactor (SGC), and 50 gyrations as the design number of gyrations (Ndesign). Use a target laboratory-molded density of 96.0% to design the mixture; however, adjustments can be made to the Ndesign value as noted in Table 8. The Ndesign level may be reduced to a minimum of 35 gyrations at the Contractor's discretion.

Use a Department-approved laboratory listed on the MPL to perform the Hamburg wheel test and provide results with the mixture design or provide the laboratory mixture and request that the Department perform the Hamburg wheel test. Provide laboratory mixture and request that the Department perform the Overlay test. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel and Overlay test results on the laboratory mixture design.

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design anytime during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

- Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report combined aggregate gradation, source, specific gravity, and percent of each material used;
- the binder source and optimum design asphalt content;
- asphalt binder content and aggregate gradation of RAP and RAS stockpiles;
- the Ndesign level used on the SGC;
- results of all applicable tests;
- the mixing and molding temperatures;
- the signature of the Level 2 person or persons who performed the design;
- the date the mixture design was performed; and
- a unique identification number for the mixture design.

	Aggregate (VMA) Requirements						
Sieve Size	SMA-C	SMAR-F					
	Coarse	Medium	Fine	Fine			
3/4"	100.0 ¹	100.0 ¹	-	-			
1/2"	80.0-90.0	85.0–99.0	100.0 ¹	100.0 ¹			
3/8"	25.0-60.0	50.0-75.0	70.0–100.0	95.0-100.0			
#4	20.0-28.0	20.0-32.0	30.0-60.0	40.0-50.0			
#8	14.0-20.0	16.0-28.0	20.0-40.0	17.0–27.0			
#16	8.0-20.0	8.0-28.0	6.0-30.0	12.0-22.0			
#30	8.0-20.0	8.0-28.0	6.0-30.0	8.0-20.0			
#50	8.0-20.0	8.0-28.0	6.0-30.0	6.0–15.0			
#200	8.0-12.0	8.0-12.0	4.0-12.0	5.0–9.0			
	Design VMA, % Min						
_	17.5	17.5	17.5	19.0			
	Production (Plant-Produced) VMA, % Min						
_	17.0	17.0	17.0	18.5			

Table 7
Master Gradation Limits (% Passing by Wt. or Volume) and Void in Mineral
Aggregate (VMA) Requirements

1. Defined as Max sieve size. No tolerance allowed.

Laboratory Mixture Design Properties				
Mixture Property	Test Method	Stone-Matrix Asphalt (SMA) Mixtures	Stone-Matrix Asphalt Rubber (SMAR) Mixtures	
Design gyrations (Ndesign) ¹	<u>Tex-241-F</u>	50	50	
Target laboratory-molded density, %	<u>Tex-207-F</u>	96.0	96.0	
Asphalt binder content, %	-	6.0–7.0	7.0–10.0	
Drain-down, %	<u>Tex-235-F</u>	0.10 Max	0.10 Max	
Fiber content, % by wt. of total mixture	Calculated	0.20 ² –0.50	-	
CRM content, % by wt. of A-R binder	Calculated	-	15.0 Min	
Hamburg wheel test ³ , rut depth @ 20,000 passes tested @ 50°C, mm	<u>Tex-242-F</u>	12.5 Max	12.5 Max	
Overlay test, critical fracture energy, lbin. per square inch	<u>Tex-248-F</u>	1.0 Min	1.0 Min	
Overlay test, crack progression rate		0.45 Max	0.45 Max	
Boil test ⁴	<u>Tex-530-C</u>	_	-	

 Table 8

 Laboratory Mixture Design Properties

1. Adjust within a range of 35–100 gyrations when shown on the plans or specification or when mutually agreed between the Engineer and Contractor.

2. When 3% RAS is used in the mixture, the Contractor may reduce the amount of fibers to at least 0.10% provided the mixture meets the drain-down requirement. RAS are not permitted in surface mixtures unless otherwise shown on the plans.

3. For SMAR mixes, the number of passes required for the Hamburg wheel test may be decreased. Other tests may be required for SMAR mixes instead of, or in addition to, the Hamburg wheel test when shown on the plans.

- 4. When shown on the plans. Used to establish baseline for comparison to production results.
- 4.4.2. **Job-Mix Formula Approval**. The JMF is the combined aggregate gradation, Ndesign level, and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When WMA is used, JMF1 may be designed and submitted to the Engineer without including the WMA additive, foaming process, or compaction aid. When WMA or a compaction aid is used, document the additive or process used and recommended rate in the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch, unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than two trial batches per design are required.

4.4.2.1. Contractor's Responsibilities.

- 4.4.2.1.1. **Providing Superpave Gyratory Compactor**. Provide an SGC in accordance with Item 504, "Field Office and Laboratory," and make the SGC available to the Engineer for use in molding production samples.
- 4.4.2.1.2. **Gyratory Compactor Correlation Factors**. Use <u>Tex-206-F</u>, Part II, to perform a gyratory compactor correlation when the Engineer uses a different SGC. Apply the correlation factor to all subsequent production test results.
- 4.4.2.1.3. **Submitting JMF1**. Furnish a mix design report (JMF1) with representative samples of all component materials, and request approval to produce the trial batch. Provide approximately 60 lb. of the laboratory mixture, and request the Department perform the overlay test. Provide an additional 25 lb. of the design mixture if opting to have the Department perform the Hamburg wheel test on the laboratory mixture, and request that the Department perform the test.
- 4.4.2.1.4. **Supplying Aggregates**. Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.
- 4.4.2.1.5. **Supplying Asphalt**. Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.
- 4.4.2.1.6. **Ignition Oven Correction Factors**. Notify the Engineer before performing <u>Tex-236-F</u>, Part II. Allow the Engineer to witness the mixing of ignition oven correction factor sample. Determine the aggregate and asphalt correction factors from the ignition oven in accordance with <u>Tex-236-F</u>, Part II.

If the Engineer witnesses the mixing of the ignition oven correction factor samples, provide the Engineer with identically prepared samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for QA testing during production.

Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used, unless otherwise directed. Correction factors must be performed every 12 mo.

- 4.4.2.1.7. **Boil Test**. When shown on the plans, perform the test and retain the tested sample from <u>Tex-530-C</u> until completion of the project or as directed. Use this sample for comparison purposes during production.
- 4.4.2.1.8. **Trial Batch Production**. Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch. If applicable, include the WMA additive, foaming process, or compaction aid for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements shown in Table 4 and Table 9. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.
- 4.4.2.1.9. **Trial Batch Production Equipment**. Use only equipment and materials proposed for use on the project to produce the trial batch. Provide documentation to verify the calibration or accuracy of the asphalt mass flow meter to measure the binder content. Verify that asphalt mass flow meter meets the 0.4% accuracy requirement, when applicable, in accordance with Item 520, "Weighing and Measuring Equipment." The Engineer may require that the accuracy of the mass flow meter be verified based on quantities used.
- 4.4.2.1.10. **Trial Batch Quantity**. Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.
- 4.4.2.1.11. **Number of Trial Batches**. Produce trial batches as necessary to obtain a mixture that meets the specification requirements.
- 4.4.2.1.12. **Trial Batch Sampling**. Obtain a representative sample of the trial batch and split it into three equal portions in accordance with <u>Tex-222-F</u>. Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.
- 4.4.2.1.13. **Trial Batch Testing**. Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements shown in Table 9. Ensure the trial batch mixture is also in compliance with the Hamburg wheel test requirement shown in Table 8. Use a Department-approved laboratory listed on the MPL to perform the Hamburg wheel test on the trial batch mixture, or request that the Department perform the Hamburg wheel test. Provide approximately 25 lb. of the trial batch mixture if opting to have the Department perform the Hamburg wheel test, and request that the Department perform the test. Obtain and provide approximately 60 lb. of trial batch mixture in sealed containers, boxes, or bags labeled with the control-section-job (CSJ) number, mixture type, lot, and sublot number in accordance with <u>Tex-222-F</u> for the overlay test when requested by the Engineer. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test and overlay test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.
- 4.4.2.1.14. **Development of JMF2**. After the Engineer grants full approval of JMF1, evaluate the trial batch test results, determine the optimum mixture proportions, and submit as JMF2. Adjust the asphalt binder content or gradation to achieve the specified target laboratory-molded density. The mixture produced using JMF2 must meet the requirements shown in Tables 4, 7, and 8. Overlay requirements for the trial batch are not applicable unless requested by the Engineer. Verify that JMF2 meets the operational tolerances of JMF1 in accordance with Table 9.
- 4.4.2.1.15. **Mixture Production**. Use JMF2 to produce Lot 1 as described in Section 346.4.9.3.1.1., "Lot 1 Placement," after receiving approval for JMF2 and a passing Hamburg wheel test result on the trial batch from a laboratory listed on the MPL and overlay MPL. Once JMF2 is approved, and without receiving the results

from the Department's Hamburg wheel test or overlay test on the trial batch, the Contractor may proceed to Lot 1 production at their own risk.

Notify the Engineer if electing to proceed without Hamburg wheel and overlay test results from the trial batch. Note that the Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test to be removed and replaced at the Contractor's expense.

- 4.4.2.1.16. **Development of JMF3**. Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.
- 4.4.2.1.17. **JMF Adjustments**. If JMF adjustments are necessary to achieve the specified requirements, make the adjustments before beginning a new lot. The adjusted JMF must:
 - be provided to the Engineer in writing before the start of a new lot,
 - be numbered in sequence to the previous JMF,
 - meet the mixture requirements in accordance with Table 4,
 - meet the master gradation limits in accordance with Table 7, and
 - be within the operational tolerances of JMF2 in accordance with Table 9.
- 4.4.2.1.18. **Requesting Referee Testing**. Use referee testing, if needed, in accordance with Section 346.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Operational Tolerances				
Description	Test Method	Allowable Difference Between JMF2 and JMF1 Target ¹	Allowable Difference Between Current JMF and JMF ²	Allowable Difference Between Contractor and Engineer ³
Individual % retained on #8 sieve and larger	- Tex-200-F	Must be within	±3.04	±5.0
Individual % retained on sieves smaller than #8 and larger than #200	or <u>Tex-236-F</u>	master gradation limits in accordance with Table 7	±3.04	±3.0
% passing the #200 sieve			±2.04	±1.6
Asphalt binder content,5,6 %	<u>Tex-236-F</u>	±0.5 ⁷	±0.37	±0.3
Laboratory-molded density, %		±1.0	±1.0	±0.5
In-place air voids, %	Tex-207-F	-	-	±1.0
Laboratory-molded bulk specific gravity		_	_	±0.020
VMA, % Min	<u>Tex-204-F</u>	Note ⁸	Note ⁸	_
Theoretical Max specific (Rice) gravity	<u>Tex-227-F</u>	-	_	±0.020
Drain-down	Tex-235-F	Note ⁹	Note 9	_

Table 9 perational Tolerance

1. JMF1 is the approved laboratory mixture design used for producing the trial batch. JMF2 is the approved mixture design developed from the trial batch used to produce Lot 1.

2. Current JMF is JMF3 or higher. JMF3 is the approved mixture design used to produce Lot 2.

- 3. Contractor may request referee testing when values exceed these tolerances.
- 4. When within these tolerances, mixture production gradations may fall outside the master gradation limits; however, the % passing the #200 will be considered out of tolerance when outside the master gradation limits.

5. Ensure the asphalt binder content determination excludes fibers.

6. May be obtained from asphalt flow meter readouts as determined by the Engineer. Add the recycled binder content to the flow meter readout when the asphalt mass flow meter is used to determine binder content.

7. Binder content is not allowed to be outside the limits shown in Table 8.

8. Verify that Table 7 requirements are met for VMA.

9. Verify that Table 8 requirements are met for drain-down.

- 4.4.2.2.1. **SGC**. The Engineer will use a Department SGC, calibrated in accordance with <u>Tex-241-F</u>, to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location.
- 4.4.2.2.2. **Conditional Approval of JMF1 and Authorizing Trial Batch**. The Engineer will review and verify conformance with the following information within 2 working days of receipt.
 - The Contractor's mix design report (JMF1).
 - The Department-provided overlay test results.
 - The Contractor-provided Hamburg wheel test results.
 - All required materials including aggregates, asphalt, additives, and recycled materials.
 - The mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg wheel and overlay test results with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on the test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with Section 346.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after 2 working days, conditional approval of JMF1 will still be granted within 2 working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

The Contractor is authorized to produce a trial batch after the Engineer grants conditional approval of JMF1.

- 4.4.2.2.3. Hamburg Wheel and Overlay Testing of JMF1. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the laboratory mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg wheel test requirement shown in Table 8. The Engineer will perform the overlay test and mold samples in accordance with <u>Tex-248-F</u> to verify compliance with the overlay test requirements shown in Table 8. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel and overlay test results on the laboratory mixture design.
- 4.4.2.2.4. **Ignition Oven Correction Factors**. The Engineer will determine ignition oven correction factors by one of the following options.
 - Witness the mixing of ignition oven correction factor samples by the Contractor in accordance with <u>Tex-236-F</u>, Part III. The Engineer will use the identically prepared samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven in accordance with <u>Tex-236-F</u>, Part II.
 - If the Engineer does not witness the mixing of ignition oven correction factor samples, the Engineer will prepare the samples to determine the aggregate and asphalt correction factors for the ignition oven in accordance with <u>Tex-236-F</u>, Part II. Notify the Contractor before performing <u>Tex-236-F</u>, Part II. Allow the Contractor to witness the Engineer performing <u>Tex-236-F</u>, Part II.

Correction factors must be performed every 12 mo. to be used for QA testing during production.

4.4.2.2.5. **Testing the Trial Batch**. Within 1 full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements shown in Table 9. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the trial batch mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg wheel test requirement shown in Table 8.

The Engineer will have the option to perform the following tests on the trial batch.

- <u>Tex-248-F</u>, to confirm the mixture meets the overlay test requirements shown in Table 8
- When shown on the plans, <u>Tex-530-C</u>, to retain and use for comparison purposes during production
- 4.4.2.2.6. **Full Approval of JMF1**. The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements shown in Tables 7, 8, and 9. The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.
- 4.4.2.2.7. **Approval of JMF2**. The Engineer will approve JMF2 within 1 working day if the mixture meets the requirements shown in Tables 4, 7, 8, and 9. Overlay requirements for the trial batch are not applicable unless requested by the Engineer.
- 4.4.2.2.8. **Approval of Lot 1 Production**. The Engineer will authorize the Contractor to proceed with JMF2 for Lot 1 production after a passing Hamburg wheel test result on the trial batch is achieved from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch.

If the Department-approved laboratory's sample from the trial batch fails the Hamburg wheel test, the Engineer will suspend production until further Hamburg wheel tests meet the specified values. The Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test be removed and replaced at the Contractor's expense.

- 4.4.2.2.9. **Approval of JMF3 and Subsequent JMF Changes**. JMF3 and subsequent JMF changes are approved if they meet the mixture requirements shown in Table 4, the master grading limits shown in Table 7, and the asphalt binder content shown in Table 8, and they are within the operational tolerances of JMF2 shown in Table 9. Current JMF changes that exceed the operational tolerances of JMF2 shown in Table 9 may require a new laboratory mixture design, trial batch, or both. The addition of a WMA additive to facilitate mixing or as a compaction aid does not require a new laboratory mixture design or trial batch.
- 4.5. **Production Operations**. Perform a new trial batch when the plant or plant location is changed. All source changes for asphalt will require a passing Hamburg wheel test result from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch. All aggregate source changes will require a new laboratory mixture design and trial batch. Take corrective action and receive approval to proceed after any production suspension for noncompliance with the specification. Submit a new mix design and perform a new trial batch when the asphalt binder content of:
 - any RAP stockpile used in the mix is more than 0.5% higher than the value shown in the mixture design report, or
 - RAS stockpile used in the mix is more than 2.0% higher than the value shown in the mixture design report.
- 4.5.1. **Storage and Heating of Materials**. Do not heat the asphalt binder above the temperatures specified in Item 300, or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and HMA discharge temperatures (in legible and discernible increments) in accordance with Item 320, unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.
- 4.5.2. **Mixing and Discharge of Materials**. Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperature shown in Table 10. The Department will not pay for or allow placement of any mixture produced above the maximum production temperature shown in Table 10.

346

Max i roduction remperature		
	High-Temperature Binder Grade ¹	Max Production Temperature (°F)
	PG 76	345 ²
	A-R binder	345 ²
1.	The high-temperature binder grade refers to the	ne high-temperature grade of the virgin

Table	10
Max Production	Temperature

asphalt binder used to produce the mixture.

2. The Max production temperature of WMA is 275°F.

Produce WMA within the target discharge temperature range of 215–275°F when WMA is required. Take corrective action anytime the discharge temperature of the WMA exceeds the target discharge range. The Engineer may suspend production operations if the Contractor's corrective action is not successful at controlling the production temperature within the target discharge range. Note that when WMA is produced, it may be necessary to adjust burners to ensure complete combustion such that no burner fuel residue remains in the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with <u>Tex-212-F</u>, Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck and perform the test promptly.

4.6. **Hauling Operations**. Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent listed on the MPL to coat the inside bed of the truck when necessary. Do not use diesel or any release agent not listed on the MPL.

Use equipment for hauling as defined in Section 346.4.7.3.3., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. Placement Operations. Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a handheld thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture as discharged from the truck or material transfer device (MTD) before or as the mix enters the paver. Measure the mixture temperature at a minimum frequency of one per ten trucks, or as approved. Include an approximate station number or Global Positioning System coordinates of the location where the temperature was taken on each ticket. Ensure the mixture meets the temperature requirements shown in Table 10. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide within 6 in. of lane lines, are not placed in the wheel path, or will not be covered with pavement markings, or as directed. Ensure that all finished surfaces will drain properly. Place the mixture at the rate or thickness shown on the plans. The Engineer will use the guidelines shown in Table 11 to determine the compacted lift thickness of each layer when multiple lifts are required. The thickness determined is based on the rate of 110 lb. per square yard for each inch of pavement unless otherwise shown on the plans.

	Compacted Lift Thickness Guidelines		Min Untrimmed Core Height
Mixture Type	Min	Max	Eligible for Testing
	(in.)	(in.)	(in.)
SMA-C	2.25	4.00	1.75
SMA-D	1.50	3.00	1.25
SMA-F	1.25	2.00	1.25
SMAR-F	1.50	3.00	1.25

Table 11 Compacted Lift Thickness and Required Core Height

4.7.1. Weather Conditions.

4.7.1.1. When Using a Thermal Imaging System. Place mixture when the roadway is dry and the roadway surface temperature is at or above 60°F, unless otherwise approved or as shown on the plans. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 346.4.7.3.1.2., "Thermal Imaging System."

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.1.2. When Not Using a Thermal Imaging System. When using a thermal camera instead of the thermal imaging system, place mixture when the roadway surface temperature is at or above 70°F, unless otherwise approved or as shown on the plans. Measure the roadway surface temperature using a handheld thermal camera or infrared thermometer. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. The Engineer may restrict the Contractor from paving if the air temperature is 60°F and falling.

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.2. **Tack Coat**.

- 4.7.2.1. **Application**. Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 gal. and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply the tack coat to all surfaces that will come in contact with the subsequent HMA placement, unless otherwise directed. Apply adequate overlap of the tack coat in the longitudinal direction during placement of the mat to ensure bond of adjacent mats, unless otherwise directed. Allow adequate time for emulsion to break completely before placing any material. Prevent splattering of tack coat when placed adjacent to curb, gutter, and structures. The Engineer may suspend paving operations until there is adequate coverage. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required in conformance with the manufacturer's recommendation for approved TRAIL products on the MPL.
- 4.7.2.2. **Sampling**. The Engineer will obtain at least one sample of the tack coat binder per project per source in accordance with <u>Tex-500-C</u>, Part III, and test it to verify compliance with Item 300. The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample from the asphalt distributor immediately before use. Label the can with the corresponding lot and sublot numbers, producer name, producer facility location; grade; District; date sampled; all applicable bills of ladings (if available), and project information, including highway and CSJ number. For emulsions, the Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in Item 300.
- 4.7.3. **Lay-Down Operations**. Use the placement temperature shown in Table 12 to establish the minimum placement temperature of mixture delivered to the paving operation.

Min Mixture Placement Temperature		
High-Temperature Binder Grade ¹	Min Placement Temperature ^{2,3,4} (°F)	
PG 76	280	
A-R binder	280	

Table 12 Min Mixture Placement Temperature

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

2. The mixture temperature must be measured using a handheld thermal camera or infrared thermometer immediately before entering MTD or paver.

 Min placement temperatures may be reduced 20°F if using a chemical WMA additive as a compaction aid, MTD with remixing capabilities, or paver hopper insert with remixing capabilities.

4. When using WMA, the Min placement temperature is 215°F.

4.7.3.1. **Thermal Profile**. Use a hand-held thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with <u>Tex-244-F</u>. Thermal profiles are not applicable in areas described in Section 346.4.9.3.1.4., "Miscellaneous Areas."

4.7.3.1.1. Thermal Segregation.

- 4.7.3.1.1.1. **Moderate**. Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F.
- 4.7.3.1.1.2. **Severe**. Any areas that have a temperature differential greater than 50°F.
- 4.7.3.1.2. **Thermal Imaging System**. Review the output results when a thermal imaging system is used, and provide the automated report described in <u>Tex-244-F</u> to the Engineer daily, unless otherwise directed. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system.

The Engineer may suspend subsequent paving operations if the Contractor cannot successfully modify the paving process to eliminate recurring severe thermal segregation. Density profiles are not required and not applicable when using a thermal imaging system.

Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots daily or as requested.

4.7.3.1.3. **Thermal Camera**. Provide the Engineer with the thermal profile of every sublot within 1 working day of the completion of each lot. When requested by the Engineer, provide the thermal images generated using the thermal camera. Report the results of each thermal profile in accordance with Section 346.4.2., "Reporting and Responsibilities." The Engineer will use a handheld thermal camera to obtain a thermal profile at least once per project.

Take immediate corrective action to eliminate recurring moderate thermal segregation when a handheld thermal camera is used.

Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet the requirements of this Section. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that contains severe thermal segregation. Evaluate areas with severe thermal segregation by performing density profiles in accordance with Section 346.4.9.3.3.3., "Segregation (Density Profile)." Remove and replace the material in any areas that have severe thermal segregation and a failing result for segregation (density profile) unless otherwise directed. The sublot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

4.7.3.2. **Windrow Operations**. Operate windrow pickup equipment so that when hot mix is placed in windrows, substantially all the mixture deposited on the roadbed is picked up and loaded into the paver.

- 4.7.3.3. **Hauling Equipment**. Use belly dump, live-bottom, or end dump trucks to haul and transfer mixture. Except for paving miscellaneous areas, end dump trucks are allowed only when used in conjunction with an MTD with remixing capability, or when a thermal imaging system is used, unless otherwise approved.
- 4.7.3.4. **Screed Heaters**. Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 346.4.9.3.3.5., "Recovered Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.
- 4.8. **Compaction**. Compact the pavement uniformly to contain between 3.7% and 7.0% in-place air voids. Take immediate corrective action to bring the operation within 3.7% and 7.0% when the in-place air voids exceed the range of these tolerances. The Engineer will allow paving to resume when the proposed corrective action is likely to yield between 3.7% and 7.0% in-place air voids.

Obtain cores in areas placed under exempt production, as directed, at locations determined by the Engineer. The Engineer may test these cores and suspend operations or require removal and replacement if the in-place air voids are less than 2.7% or more than 8.0%. Areas defined in Section 346.4.9.3.1.4., "Miscellaneous Areas," are not subject to in-place air void determination.

Furnish the type, size, and number of rollers necessary to ensure desired compaction. Use additional rollers as required to remove any roller marks. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

Use the control strip method shown in <u>Tex-207-F</u>, Part IV, on the first day of production to establish the rolling pattern that will produce the desired in-place air voids, unless otherwise directed.

Use tamps to thoroughly compact the edges of the pavement along curbs, headers, and similar structures, and in locations that will not allow thorough compaction using rollers. The Engineer may require rolling using a trench roller on widened areas, in trenches, and in other limited areas.

Complete all compaction operations before the pavement temperature drops below 180°F, unless otherwise allowed. The Engineer may allow compaction using a light finish roller operated in static mode for pavement temperatures below 180°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

4.9. Acceptance Plan. Payment adjustments for the material will be in accordance with Article 346.6., "Payment."

Sample and test the hot mix on a lot-and-sublot basis. Suspend production if the production payment factor shown in Section 346.6.1., "Production Payment Adjustment Factors," or the placement payment factor shown in Section 346.6.2., "Placement Payment Adjustment Factors," for two consecutive lots is below 1.000. Resume production once test results or other information indicates to the satisfaction of the Engineer that the next material produced or placed will result in payment factors of at least 1.000.

4.9.1. Referee Testing. The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if a "remove and replace" condition is determined based on the Engineer's test results, or if the differences between Contractor and Engineer test results exceed the maximum allowable difference in accordance with Table 9 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within 5 working days after receiving test results and cores from the Engineer. Referee tests will be performed only on the sublot in question and only for the tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to be reported. The Department may require the Contractor to reimburse the Department for referee tests if more than three referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

The Materials and Tests Division will determine the laboratory-molded density based on the molded specific gravity and the maximum theoretical specific gravity of the referee sample. The in-place air voids will be determined based on the bulk-specific gravity of the cores, as determined by the referee laboratory, and the Engineer's average maximum theoretical specific gravity for the lot. Except for "remove and replace" conditions, referee test results are final and will establish payment adjustment factors for the sublot in question. The Contractor may decline referee testing and accept the Engineer's test results when the placement payment adjustment factor for any sublot results in a "remove and replace" condition. Placement sublots subject to be removed and replaced will be further evaluated in accordance with Section 346.6.2.2., "Placement Sublots Subject to Removal and Replacement."

4.9.2. **Production Acceptance**.

- 4.9.2.1. **Production Lot**. A production lot consists of four equal sublots. The default quantity for Lot 1 is 1,000 ton; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 4,000 ton. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately three–four sublots are produced each day. The lot size will be between 1,000 ton and 4,000 ton. The Engineer may change the lot size before the Contractor begins any lot.
- 4.9.2.1.1. **Incomplete Production Lots**. If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Adjust the payment for the incomplete lot in accordance with Section 346.6.1., "Production Payment Adjustment Factors." Close all lots within 5 working days unless otherwise allowed.

4.9.2.2. **Production Sampling**.

- 4.9.2.2.1. Mixture Sampling. The Engineer will perform or witness the sampling of production sublots from trucks at the plant in accordance with <u>Tex-222-F</u>. The sampler will split each sample into three equal portions in accordance with <u>Tex-200-F</u> and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee." The Engineer is completed.
- 4.9.2.2.1.1. **Random Sample**. At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with <u>Tex-225-F</u>. Take one sample for each sublot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.
- 4.9.2.2.1.2. **Blind Sample**. For one sublot per lot, the Engineer will sample, split, and test a "blind" production sample instead of the random sample collected by the Contractor. The location of the Engineer's "blind" sample will not be disclosed to the Contractor before sampling. The Engineer's "blind" sample may be randomly selected in accordance with <u>Tex-225-F</u> for any sublot or selected at the discretion of the Engineer. The Engineer may sample and test an additional blind sample when the random sampling process does not result in obtaining a sample.

For one sublot per lot, the Contractor must obtain from the Engineer a "blind" production sample collected by the Engineer. If desired, the Contractor may witness the collection of blind samples. Test either the "blind" or the random sample; however, referee testing for the sublot (if applicable) will be based on a comparison of results from the "blind" sample.

- 4.9.2.2.2. Informational Methylene Blue Testing. During the project and at random, obtain and provide the Engineer with approximately 50 lb. of each fine aggregate and approximately 20 lb. of all mineral fillers used to produce the mixture. Label the samples with the CSJ number, mixture type, and approximate lot and sublot numbers corresponding to when the sample was taken. The Engineer will ship the samples to the Materials and Tests Division for methylene blue testing in accordance with <u>Tex-252-F</u>. Results from these tests will not be used for specification compliance.
- 4.9.2.2.3. Asphalt Binder Sampling. The Engineer will witness the Contractor obtain a 1-qt. sample of the asphalt binder for each lot of mixture produced. The Contractor will notify the Engineer when the sampling will occur.

Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with <u>Tex-500-C</u>, Part II. Label the can with the corresponding lot and sublot numbers, producer name, producer facility, grade, District, date sampled, all applicable bills of lading (if available), and project information, including highway and CSJ number. The Engineer will retain these samples for 1 yr. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample and upon request of the Contractor, the Engineer will split a sample of the asphalt binder with the Contractor.

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to the Materials and Tests Division to verify compliance with Item 300, and will retain the other split sample for 1 yr.

4.9.2.3. **Production Testing**. The Contractor and Engineer must perform production tests in accordance with Table 13. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances shown in Table 9 for all sublots.

Take immediate corrective action if the Engineer's laboratory-molded density on any sublot is less than 95.0% or greater than 97.0% to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

At any time during production the Engineer may require the Contractor to verify the following based on quantities used:

- lime content (within ±0.1% of JMF), when PG binder is specified,
- fiber content (within ±0.03% of JMF), when PG binder is specified, and
- CRM content (within ±1.5% of JMF), when A-R binder is specified.

Maintain the in-line measuring device to verify the A-R binder viscosity between 2,500 and 4,000 centipoise at 350°F when A-R binder is specified unless otherwise approved. Record A-R binder viscosity at least once an hour and provide the Engineer with a daily summary unless otherwise directed.

The Engineer may allow alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that <u>Tex-236-F</u>, Part I does not yield reliable results. Provide evidence that results from <u>Tex-236-F</u>, Part I are not reliable before requesting permission to use an alternate method unless otherwise directed. Use the applicable test procedure as directed if an alternate test method is allowed.

Production and Placement Testing Frequency				
Description	Test Method	Min Contractor Testing Frequency	Min Engineer Testing Frequency	
Individual % retained on #8 sieve and larger Individual % retained on sieves smaller than #8 and larger than #200 % passing #200 sieve	<u>Tex-200-F</u> or <u>Tex-236-F</u>	1 per sublot	1 per 12 sublots ¹	
Laboratory-molded density Laboratory-molded bulk-specific gravity In-place air voids VMA	<u>Tex-207-F</u> Tex-204-F	_	1 per sublot ¹	
Segregation (density profile)	Tex-207-F, Part V	1 per sublot ²	1 per project	
Longitudinal joint density	Tex-207-F, Part VII	1 per sublot ³	1 per project	
Moisture content	Tex-212-F, Part II	When directed	1 per project	
Theoretical maximum specific (Rice) gravity	<u>Tex-227-F</u>	_	1 per sublot ¹	
Drain-down	Tex-235-F	1 per sublot	1 per 12 sublots ¹	
Asphalt binder content ⁴	Tex-236-F	1 per sublot	1 per lot ¹	
Hamburg wheel test	Tex-242-F	-	1 per project	
Overlay test ⁵	<u>Tex-248-F</u>	-	1 per project	
Deleterious in RAS ⁶	Tex-217-F, Part III	-	1 per project	
Thermal profile	<u>Tex-244-F</u>	1 per sublot ²	1 per project	
Asphalt binder sampling and testing ^{6,7}	<u>Tex-500-C</u>	_		
Tack coat sampling and testing	<u>Tex-500-C</u> , Part III	-		
Boil test ⁸	<u>Tex-530-C</u>	1 per lot	1 per project	
Methylene blue test ⁹	<u>Tex-252-F</u>	_		
Shear bond strength test ¹⁰	<u>Tex-245-F</u>	-		

Table 13

1. For production defined in Section 346.4.9.4., "Exempt Production," the Engineer will perform one test per day if 100 ton or more is produced. For exempt production, no testing is required when <100 ton is produced.

- 2. To be performed in the presence of the Engineer when not using thermal imaging system, unless otherwise approved.
- 3. To be performed in the presence of Engineer.
- 4. Ensure the binder content determination excludes fibers.
- 5. Use a laboratory listed on the Overlay MPL to test a sample obtained from Lot 2 or higher.
- 6. Testing performed by the Materials and Tests Division or designated laboratory.
- 7. Sampling performed by the Contractor. The Engineer will witness sampling and retain the samples for 1 yr.

8. When shown on the plans.

- 9. Testing performed by the Materials and Tests Division for informational purposes only.
- 10. Testing performed by the Materials and Tests Division or District for informational purposes on a sample obtained by the Contractor within the first four lots of the project.
- 4.9.2.4. **Operational Tolerances**. Control the production process within the operational tolerances shown in Table 9. When production is suspended, the Engineer will allow production to resume when test results or other information indicates the next mixture produced will be within the operational tolerances.
- 4.9.2.4.1. **Gradation**. Suspend operation and take corrective action if any aggregate is retained on the maximum sieve size shown in Table 7. A sublot is defined as out of tolerance if either the Engineer's or the Contractor's test results are out of operational tolerance. Suspend production when test results for gradation exceed the operational tolerances shown in Table 9 for three consecutive sublots on the same sieve or four consecutive sublots on any sieve, unless otherwise directed. The consecutive sublots may be from more than one lot.
- 4.9.2.4.2. Asphalt Binder Content. A sublot is defined as out of operational tolerance if either the Engineer's or the Contractor's test results exceed the values shown in Table 9. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that is out of operational tolerance for asphalt binder content. Suspend production and shipment of the mixture if the Engineer's or the Contractor's asphalt binder content deviates from the current JMF by more than 0.5% for any sublot or is less than the minimum asphalt content allowed in accordance with Table 8.

4.9.2.4.3. VMAs. The Engineer will determine the VMA for every sublot. For sublots when the Engineer does not determine asphalt binder content, the Engineer will use the asphalt binder content results from QC testing performed by the Contractor to determine VMA.

Take immediate corrective action if the VMA value for any sublot is less than the minimum VMA requirement for production shown in Table 7. Suspend production and shipment of the mixture if the Engineer's VMA results on two consecutive sublots are below the minimum VMA requirement for production shown in Table 7. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that does not meet the minimum VMA requirement for production shown in Table 7 based on the Engineer's VMA determination.

Suspend production and shipment of the mixture if the Engineer's VMA result is more than 0.5% below the minimum VMA requirement for production shown in Table 7. In addition to suspending production, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment.

- 4.9.2.4.4. **Fibers**. Suspend production and shipment of the mixture if fiber content varies from the design target value by more than ±0.03% on two consecutive tests.
- 4.9.2.4.5. **Hamburg Wheel Test**. The Engineer may perform a Hamburg wheel test on plant-produced mixture anytime during production. Suspend production until further Hamburg wheel tests meet the specified values when the production samples fail the Hamburg wheel test criteria shown in Table 8. The Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test to be removed and replaced at the Contractor's expense.

If the Department-approved laboratory's Hamburg wheel test results in a "remove and replace" condition, the Contractor may request that the Materials and Tests Division determine the final disposition of the material in question by re-testing the failing material.

4.9.2.5. Individual Loads of Hot Mix. The Engineer may reject individual truckloads of hot mix. When a load of hot mix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances shown in Table 9, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.3. Placement Acceptance.

- 4.9.3.1. **Placement Lot**. A placement lot consists of four placement sublots. A placement sublot consists of the area placed during a production sublot.
- 4.9.3.1.1. **Lot 1 Placement**. Placement payment adjustments greater than 1.000 for Lot 1 will be in accordance with Section 346.6.2., "Placement Payment Adjustment Factors"; however, no placement adjustment less than 1.000 will be assessed for any sublot placed in Lot 1 when the in-place air voids are greater than or equal to 2.7% and less than or equal to 8.0%. Remove and replace any sublot with in-place air voids less than 2.7% or greater than 8.0%.
- 4.9.3.1.2. Incomplete Placement Lots. An incomplete placement lot consists of the area placed as described in Section 346.4.9.2.1.1., "Incomplete Production Lots," excluding areas defined in Section 346.4.9.3.1.4., "Miscellaneous Areas." Placement sampling is required if the random sample plan for production resulted in a sample being obtained from an incomplete production sublot.
- 4.9.3.1.3. **Shoulders, Ramps, Etc.** Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are subject to in-place air void determination and payment adjustments unless shown on the plans as not eligible for in-place air void determination. Intersections may be considered miscellaneous areas when determined by the Engineer.

- 4.9.3.1.4. **Miscellaneous Areas**. Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations, such as temporary detours, driveways, mailbox turnouts, crossovers, gores, spot level-up areas, pavement repair sections less than 300 ft., and other similar areas. Temporary detours are subject to in-place air void determination when shown on the plans. Miscellaneous areas also include level-ups and thin overlays when the layer thickness shown on the plans is less than the minimum untrimmed core height eligible for testing shown in Table 11. The specified layer thickness is based on the rate of 110 lb. per square yard for each inch of pavement unless another rate is shown on the plans. When "Level Up" is listed as part of the bid item description code, a payment adjustment factor of 1.000 will be assigned for all placement sublots as described in Article 346.6., "Payment." Miscellaneous areas are not eligible for random placement sampling locations. Compact miscellaneous areas in accordance with Section 346.4.8., "Compaction." Miscellaneous areas are not subject to in-place air void determination, thermal profiles testing, segregation (density profiles), or longitudinal joint density evaluations.
- 4.9.3.2. **Placement Sampling**. The Engineer will select random numbers for all placement sublots at the beginning of the project. The Engineer will provide the Contractor with the placement random numbers only immediately after the sublot is completed. Mark the roadway location at the completion of each sublot and record the station number. Determine one random sample location for each placement sublot in accordance with <u>Tex-225-F</u>. Adjust the random sample location by no more than necessary to achieve a 2-ft. clearance if the location is within 2 ft. of a joint or pavement edge.

Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are always eligible for selection as a random sample location; however, if a random sample location falls on one of these areas and the area is shown on the plans as not subject to in-place air void determination, cores will not be taken for the sublot and a 1.000 pay factor will be assigned to that sublot.

Provide the equipment and means to obtain and trim roadway cores onsite. "Onsite" is defined as in close proximity to where the cores are taken. Obtain the cores within 1 working day of the time the placement sublot is completed, unless otherwise approved. Obtain two 6-in. diameter cores side-by-side from within 1 ft. of the random location provided for the placement sublot. Mark the cores for identification, measure and record the untrimmed core height, and provide the information to the Engineer. The Engineer will witness the coring operation and measurement of the core thickness. Visually inspect each core and verify that the current paving layer is bonded to the underlying layer. Take corrective action if an adequate bond does not exist between the current and underlying layer to ensure that an adequate bond will be achieved during subsequent placement operations.

Trim the cores immediately after obtaining them from the roadway in accordance with Tex-251-F if the core heights meet the minimum untrimmed value in accordance with Table 11. Trim the cores onsite in the presence of the Engineer. Use a permanent marker or paint pen to record the lot and sublot numbers on each core, as well as the designation as Core A or Core B. The Engineer may require additional information to be marked on the core and may choose to sign or initial the core. The Engineer will take custody of the cores immediately after witnessing the trimming of the cores and will retain custody of the cores until the Department's testing is completed. Before turning the trimmed cores over to the Engineer, the Contractor may wrap the trimmed cores or secure them in a manner that will reduce the risk of possible damage occurring during transport by the Engineer. After testing, the Engineer will return the cores to the Contractor.

The Engineer may have the cores transported back to the Department's laboratory at the HMA plant via the Contractor's haul truck or other designated vehicle. In such cases where the cores will be out of the Engineer's possession during transport, the Engineer will use Department-provided security bags and the protocol for Roadway Core Custody protocol located on the Department's website to provide a secure means and process that protect the integrity of the cores during transport.

Decide whether to include the pair of cores in the air void determination for that sublot if the core height before trimming is less than the minimum untrimmed value shown in Table 11. Trim the cores as described in the preceding paragraphs before delivering to the Engineer if electing to have the cores included in the air void determination. If electing to not have the cores included in air void determination, inform the Engineer of the decision and deliver untrimmed cores to the Engineer. The placement pay factor for the sublot will be 1.000 if cores will not be included in air void determination.

Instead of the Contractor trimming the cores onsite immediately after coring, the Engineer and the Contractor may mutually agree to have the trimming operations performed at an alternate location, such as a field laboratory or other similar location. In such cases, the Engineer will take possession of the cores immediately after they are obtained from the roadway and will retain custody of the cores until testing is completed. Either the Department or Contractor representative may perform trimming of the cores. The Engineer will witness all trimming operations in cases where the Contractor representative performs the trimming operation.

Dry the core holes and tack the sides and bottom immediately after obtaining the cores. Fill the hole with the same type of mixture and properly compact the mixture. Repair core holes using other methods when approved.

- 4.9.3.3. **Placement Testing**. Perform placement tests in accordance with Table 13. After the Engineer returns the cores, the Contractor may test the cores to verify the Engineer's test results for in-place air voids. The allowable differences between the Contractor's and Engineer's test results are shown in Table 9.
- 4.9.3.3.1. In-Place Air Voids. The Engineer will measure in-place air voids in accordance with <u>Tex-207-F</u> and <u>Tex-227-F</u>. Before drying to a constant weight, cores may be pre-dried using a CoreDry or similar vacuum device to remove excess moisture. The Engineer will average the values obtained for all sublots in the production lot to determine the theoretical maximum specific gravity. The Engineer will use the average air void content for in-place air voids.

The Engineer will use the vacuum method to seal the core if required in accordance with <u>Tex-207-F</u>. The Engineer will use the test results from the unsealed core to determine the placement payment adjustment factor if the sealed core yields a higher specific gravity than the unsealed core. After determining the in-place air void content, the Engineer will return the cores and provide test results to the Contractor.

- 4.9.3.3.2. Informational Shear Bond Strength Testing. The Engineer will select one random sublot within the first four lots of the project for shear bond strength testing. Obtain full depth cores in accordance with <u>Tex-249-F</u> unless the HMA is being placed directly on concrete pavement. Label the cores with lot and sublot numbers and provide to the Engineer. Inspector must use pertinent Department form to document the CSJ number, producer of the tack coat, mix type, and shot rate. The Engineer will ship the cores to the Materials and Tests Division or District laboratory for shear bond strength testing. Results from these tests will not be used for specification compliance.
- 4.9.3.3.3. Segregation (Density Profile). Test for segregation using density profiles in accordance with <u>Tex-207-F</u>, Part V. Density profiles are not required and are not applicable when using a thermal imaging system. Density profiles are not applicable in areas described in Section 346.4.9.3.1.4., "Miscellaneous Areas."

Perform at least one density profile per sublot. Perform additional density profiles when any of the following conditions occur, unless otherwise approved.

- Areas that are identified by either the Contractor or the Engineer with severe thermal segregation.
- Any visibly segregated areas that exist.
- The paver stops due to lack of material being delivered to the paving operations and the temperature of the uncompacted mat before the initial breakdown rolling is less than the temperatures shown in Table 14.

Min Uncompacted Mat Temperature Requiring Segregation Profile ¹		
High-Temperature Binder Grade ²	Min Temperature of Uncompacted Mat Allowed Before Initial Breakdown Rolling ^{3,4,5} (°F)	
PG 76	<270	
A-R binder	<270	

Table 14 Incompacted Mat Temperature Requiring Segregation Profile¹

1. Applicable only to paver stops that occur due to lack of material being delivered to the paving operations and when not using a thermal imaging system.

 The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

- 3. The surface of the uncompacted mat must be measured using a handheld thermal camera or infrared thermometer.
- 4. Min uncompacted mat temperature requiring a segregation profile may be reduced 20°F if using a chemical WMA additive as a compaction aid, MTD with remixing capabilities, or paver hopper insert with remixing capabilities.
- 5. When using WMA, the Min uncompacted mat temperature requiring a segregation profile is 215°F.

Provide the Engineer with the density profile of every sublot in the lot within 1 working day of the completion of each lot. Report the results of each density profile in accordance with Section 346.4.2., "Reporting and Responsibilities."

The density profile is considered failing if it exceeds the tolerances shown in Table 15. When a thermal imaging system is not used, the Engineer will measure the density profile at least once per project. The Engineer's density profile results will be used when available. The Engineer may require the Contractor to remove and replace the area in question if the area fails the density profile and has surface irregularities as defined in Section 346.4.9.3.3.6., "Irregularities." The sublot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

Investigate density profile failures and take corrective actions during production and placement to eliminate the segregation. Suspend production if two consecutive density profiles fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Segregation (Density Profile) Acceptance Criteria			
Mixture Type Max Allowable Density Range (Highest to Lowest) Max Allowable Density R			
SMA-C	8.0 pcf	5.0 pcf	
SMA-D, SMA-F & SMAR-F	6.0 pcf	3.0 pcf	

Table 15 egregation (Density Profile) Acceptance (

4.9.3.3.4. Longitudinal Joint Density.

- 4.9.3.3.4.1. **Informational Tests**. Perform joint density evaluations while establishing the rolling pattern and verify that the joint density is no more than 3.0 pcf below the density taken at or near the center of the mat. Adjust the rolling pattern, if needed, to achieve the desired joint density. Perform additional joint density evaluations, at least once per sublot, unless otherwise directed.
- 4.9.3.3.4.2. **Record Tests**. Perform a joint density evaluation for each sublot at each pavement edge that is or will become a longitudinal joint. Joint density evaluations are not applicable in areas described in Section 346.4.9.3.1.4., "Miscellaneous Areas." Determine the joint density in accordance with <u>Tex-207-F</u>, Part VII. Record the joint density information and submit results on Department forms to the Engineer. The evaluation is considered failing if the joint density is more than 3.0 pcf below the density taken at the core random sample location and the correlated joint density is less than 90.0%. The Engineer will make independent joint density verification at least once per project and may make independent joint density verifications. The Engineer's joint density test results will be used when available.

Provide the Engineer with the joint density of every sublot in the lot within 1 working day of the completion of each lot. Report the results of each joint density in accordance with Section 346.4.2., "Reporting and Responsibilities."

Investigate joint density failures and take corrective actions during production and placement to improve the joint density. Suspend production if the evaluations on two consecutive sublots fail, unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

- 4.9.3.3.5. **Recovered Asphalt Dynamic Shear Rheometer (DSR)**. The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high-temperature PG of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with <u>Tex-211-F</u>.
- 4.9.3.3.6. **Irregularities**. Identify and correct irregularities, including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities. The Engineer may also require the Contractor to remove and replace (at the Contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than one day while the Contractor is taking appropriate corrective action.

- 4.9.4. **Exempt Production**. The mixture may be deemed as exempt production when mutually agreed upon between the Engineer and the Contractor, or when shown on the plans. Exempt production may be used for the following conditions.
 - Anticipated daily production is less than 500 ton.
 - Total production for the project is less than 5,000 ton.
 - Exempt production is not eligible for referee testing.
 - Pavement repair sections are equal to or greater than 300 ft. For pavement repair sections less than 300 ft., refer to Section 346.4.9.3.1.4., "Miscellaneous Areas."

For exempt production, the Contractor is relieved of all production and placement QC and QA sampling and testing requirements, except for coring operations when required by the Engineer. When mutually agreed upon between the Engineer and the Contractor, production sampling will be allowed at the point of delivery. When 100 ton or more per day is produced, the Engineer must perform acceptance tests for production and placement in accordance with Table 13. If the specification requirements listed below are met, the production and placement pay factors are 1.000:

- produce, haul, place, and compact the mixture in compliance with the specification and as directed;
- control mixture production to yield a laboratory-molded density that is within ±1.0% of the target laboratory-molded density as tested by the Engineer;
- compact the mixture in accordance with Section 346.4.8., "Compaction;"
- when a thermal imaging system is not used, the Engineer may perform segregation (density profiles) and thermal profiles in accordance with the specification; and
- all other specification requirements.

4.9.5. **Ride Quality**. Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

- 5.1. **Stone Matrix Asphalt**. Hot mix will be measured by the ton of composite hot mix, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520. Provide the Engineer with a daily summary of the asphalt mass flow meter readings for SMAR mixtures unless otherwise directed.
- 5.2. **Tack Coat**. Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measured by the gallon applied.

The Engineer may allow the use of a metering device to determine asphalt volume used and application rate if the device is accurate within 1.5% of the strapped volume.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Section 346.5.1., "Stone Matrix Asphalt," will be paid for at the unit price bid for "Stone Matrix Asphalt" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 346.5.2., "Tack Coat," will be paid for at the unit price bid for "Tack Coat" of the tack coat provided. These prices are full compensation for materials, placement, equipment, labor, tools, and incidentals. Payment adjustments will be applied as determined in accordance with this Item; however, a payment adjustment factor of 1.000 will be assigned for all placement sublots for level-ups only when "Level Up" is listed as part of the bid item description. A payment adjustment factor of 1.000 will be assigned to all production and placement sublots when "Exempt" is listed as part of the bid item description, and all testing requirements are met.

Payment for each sublot, including applicable payment adjustments greater than 1.000, will be paid only for sublots when the Contractor supplies the Engineer with the required documentation for production and placement QC and QA, thermal profiles, segregation density profiles, and longitudinal joint densities in accordance with Section 346.4.2., "Reporting and Responsibilities." When a thermal imaging system is used, documentation is not required for thermal profiles or segregation density profiles on individual sublots; however, the thermal imaging system reports described in <u>Tex-244-F</u> are required.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585.

6.1. **Production Payment Adjustment Factors**. The production payment adjustment factor is based on the laboratory-molded density using the Engineer's test results. The bulk-specific gravities of the samples from each sublot will be divided by the Engineer's maximum theoretical specific gravity for the sublot. The individual sample densities for the sublot will be averaged to determine the production payment adjustment factor shown in Table 16 for each sublot, using the deviation from the target laboratory-molded density shown in Table 8. The production payment adjustment factor for completed lots will be the average of the payment adjustment factors for the four sublots sampled within that lot.

Production Payment Adjustment Factors for Laboratory-Molded Density		
Absolute Deviation from Target	Production Payment Adjustment Factor	
Laboratory-Molded Density	(Target Laboratory-Molded Density)	
0.0	1.100	
0.1	1.100	
0.2	1.100	
0.3	1.086	
0.4	1.075	
0.5	1.063	
0.6	1.050	
0.7	1.038	
0.8	1.025	
0.9	1.013	
1.0	1.000	
1.1	0.900	
1.2	0.800	
1.3	0.700	
>1.3	Remove and replace	

Table 16
Production Payment Adjustment Factors for Laboratory-Molded Density ¹

 If the Engineer's laboratory-molded density on any sublot is <95.0% or >97.0%, take immediate corrective action to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

6.1.1. **Payment for Incomplete Production Lots**. Production payment adjustments for incomplete lots, described under Section 346.4.9.2.1.1., "Incomplete Production Lots," will be calculated using the average production payment factors from all sublots sampled.

A production payment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any samples within the first sublot.

- 6.1.2. **Production Sublots Subject to Removal and Replacement.** If after referee testing the laboratory-molded density for any sublot results in a "remove and replace" condition as shown in Table 13, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment. The Engineer may also accept the sublot in accordance with Section 5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.
- 6.2. **Placement Payment Adjustment Factors**. The placement payment adjustment factor is based on in-place air voids using the Engineer's test results. The bulk-specific gravities of the cores from each sublot will be divided by the Engineer's average maximum theoretical specific gravity for the lot. The individual core densities for the sublot will be averaged to determine the placement payment adjustment factor in accordance with Table 17 for each sublot that requires in-place air void measurement. A placement payment adjustment factor of 1.000 will be assigned to the entire sublot when the random sample location falls in an area shown on the plans as not subject to in-place air void determination. A placement payment adjustment factor of 1.000 will be assigned to quantities placed in areas described in Section 346.4.9.3.1.4., "Miscellaneous Areas." The placement payment adjustment factor for completed lots will be the average of the placement payment adjustment factors for up to four sublots within that lot.

	Placement Payment Adjustment Factors for In-Place Air Voids				
In-Place Placement Payment In-Place Placemen		Placement Payment			
Air Voids	Adjustment Factor	Air Voids	Adjustment Factor		
<2.7	Remove and replace	5.4	1.080		
2.7	0.710	5.5	1.075		
2.8	0.740	5.6	1.070		
2.9	0.770	5.7	1.065		
3.0	0.800	5.8	1.060		
3.1	0.830	5.9	1.055		
3.2	0.860	6.0	1.050		
3.3	0.890	6.1	1.045		
3.4	0.920	6.2	1.040		
3.5	0.950	6.3	1.035		
3.6	0.980	6.4	1.030		
3.7	1.010	6.5	1.025		
3.8	1.040	6.6	1.020		
3.9	1.070	6.7	1.015		
4.0	1.100	6.8	1.010		
4.1	1.100	6.9	1.005		
4.2	1.100	7.0	1.000		
4.3	1.100	7.1	0.970		
4.4	1.100	7.2	0.940		
4.5	1.100	7.3	0.910		
4.6	1.100	7.4	0.880		
4.7	1.100	7.5	0.850		
4.8	1.100	7.6	0.820		
4.9	1.100	7.7	0.790		
5.0	1.100	7.8	0.760		
5.1	1.095	7.9	0.730		
5.2	1.090	8.0	0.700		
5.3	1.085	>8.0	Remove and replace		

Table 17 A !... \ / .. ! .I

6.2.1. Payment for Incomplete Placement Lots. Payment adjustments for incomplete placement lots described under Section 346.4.9.3.1.2., "Incomplete Placement Lots," will be calculated using the average of the placement pay factors from all sublots sampled and sublots where the random location falls in an area shown on the plans as not eligible for in-place air void determination.

> If the random sampling plan results in production samples, but not in placement samples, the random core location and placement adjustment factor for the sublot will be determined by applying the placement random number to the length of the sublot placed.

If the random sampling plan results in placement samples, but not in production samples, no placement adjustment factor will apply for that sublot placed.

A placement payment adjustment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any production samples.

6.2.2. Placement Sublots Subject to Removal and Replacement. If after referee testing the placement payment adjustment factor for any sublot results in a "remove and replace" condition as shown in Table 17, the Engineer will choose the location of two cores to be taken within 3 ft. of the original failing core location. The Contractor must obtain the cores in the presence of the Engineer. The Engineer will take immediate possession of the untrimmed cores and submit the untrimmed cores to the Materials and Tests Division, where they will be trimmed, if necessary, and tested for bulk-specific gravity within 10 working days of receipt.

> The bulk-specific gravity of each core from each sublot will be divided by the Engineer's average maximum theoretical specific gravity for that lot. The individual core densities for the sublot will be averaged to determine the new payment adjustment factor of the sublot in question. If the new payment adjustment factor

346

is 0.700 or greater, the new payment adjustment factor will apply to that sublot. If the new payment adjustment factor is less than 0.700, no payment will be made for the sublot. Remove and replace the failing sublot, or the Engineer may allow the sublot to be left in place without payment. The Engineer may also accept the sublot in accordance with Section 5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.

6.3.

Total Adjusted Pay (TAP) Calculation. TAP will be based on the applicable payment adjustment factors for production and placement for each lot.

TAP = (A+B)/2

where:

 $A = Bid price \times production lot quantity \times average payment adjustment factor for the production lot$ $B = Bid price \times placement lot quantity \times average payment adjustment factor for the placement lot + (bid price × quantity placed in miscellaneous areas × 1.000)$

Production lot quantity = Quantity actually placed - quantity left in place without payment

Placement lot quantity = Quantity actually placed - quantity left in place without payment - quantity placed in miscellaneous areas

Item 347 Thin Overlay Mixtures

347

1. DESCRIPTION

Construct a thin surface course composed of a compacted mixture of aggregate, asphalt binder, and additives mixed hot in a mixing plant. Produce a thin overlay mixture (TOM) with a minimum lift thickness of 1/2 in. for a Type F mixture and 3/4 in. for a Type C mixture.

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met and document all material source changes when the Contractor makes a source or formulation change. The Engineer may sample and test project materials anytime during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. Aggregate. Furnish aggregates from sources that conform to the requirements shown in Table 1 and this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse, intermediate, or fine aggregate. Do not use reclaimed asphalt pavement or recycled asphalt shingles. Supply aggregates that meet the definitions in <u>Tex-100-E</u> for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests in accordance with Table 1. Document all test results in the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis in accordance with Tex-200-F, Part II.
- 2.1.1. **Coarse Aggregate**. Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's Bituminous Rated Source Quality Catalog (BRSQC), are preapproved for use. Use only the rated values for hot mix listed in the BRSQC. Rated values for surface treatment do not apply to coarse aggregate sources used in hot-mix asphalt.

For sources not listed in the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance;
- allow 30 calendar days for the Engineer to sample, test, and report results;
- use only when tested and approved; and
- once approved, do not add additional material to the stockpile unless otherwise allowed by the Engineer.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements apply only to aggregates used on the surface of travel lanes, unless otherwise shown on the plans. The SAC for sources in the Department's Aggregate Quality Monitoring Program (AQMP) (<u>Tex-499-A</u>) is listed in the BRSQC.

2.1.1.1. Blending Class A and Class B Aggregates. Class B aggregate meeting all other requirements shown in Table 1 may be blended with a Class A aggregate to meet requirements for Class A materials, unless otherwise shown on the plans. When blending Class A and Class B aggregates to meet a Class A requirement, ensure that at least 50% by weight, or volume if required, of the material retained on the No. 8 sieve comes from the Class A aggregate source, unless otherwise shown on the plans. Blend by volume if the bulk specific gravities of the Class A and Class B aggregates differ by more than 0.300. Class B aggregate may be disallowed when shown on the plans.

The Engineer may perform tests anytime during production, when the Contractor blends Class A and Class B aggregates to meet a Class A requirement. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks to verify the percent of Class A aggregate retained on the No. 4 sieve. The Engineer will use the gradations supplied by the Contractor in the mixture design report as an input for the template. A failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2. **Micro-Deval Abrasion**. The Engineer will perform at least one Micro-Deval abrasion test in accordance with <u>Tex-461-A</u> for each coarse aggregate source used in the mixture design that has a Rated Source Soundness Magnesium (RSSM) loss value greater than 15 as listed in the BRSQC. The Engineer will perform testing before the start of production and may perform additional testing anytime during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

Mgest. = (RSSM)(MDact./RSMD)

where:

Mgest. = magnesium sulfate soundness loss *RSSM* = rated source soundness magnesium *MDact* = actual Micro-Deval percent loss RSMD = rated source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Materials and Tests Division, and additional testing may be required before granting approval.

2.1.2. Intermediate Aggregate. Aggregates not meeting the definition of coarse or fine aggregate will be defined as intermediate aggregate. Supply intermediate aggregates, when used, that are free of organic impurities. Supply intermediate aggregate from coarse aggregate sources, when used that meet the requirements shown in Table 1 unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve, and verify that it meets the requirements shown in Table 1 for crushed face count (in accordance with <u>Tex-460-A</u>) and flat and elongated particles (in accordance with <u>Tex-280-F</u>).

2.1.3. **Fine Aggregate**. Fine aggregates consist of manufactured sands and screenings. Natural sands are not allowed in any mixture. Fine aggregate stockpiles must meet the fine aggregate properties shown in Table 1 and the gradation requirements shown in Table 2. Supply fine aggregates that are free of organic impurities. The Engineer may test the fine aggregate in accordance with <u>Tex-408-A</u> to verify the material is free of

organic impurities. Use fine aggregate from coarse aggregate sources that meet the requirements shown in Table 1 unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve, and verify that it meets the requirements shown in Table 1 for crushed face count (in accordance with <u>Tex-460-A</u>) and flat and elongated particles (in accordance with <u>Tex-280-F</u>).

Aggregate Quality Requirements				
Property Test Method				
Coarse Aggregate				
Tex-499-A (AQMP)	A ¹			
Tex-217-F, Part I	1.5			
Tex-217-F, Part II	1.5			
Tex-461-A	Note ²			
Tex-410-A	30			
Tex-411-A	20			
Tex-460-A, Part I	95			
Tex-280-F	10			
Fine Aggregate				
Tex-107-E	3			
Tex-203-F	45 ⁴			
Tex-408-A	Note ⁵			
	Test Method gate Tex-499-A (AQMP) Tex-217-F, Part I Tex-217-F, Part II Tex-461-A Tex-410-A Tex-460-A, Part I Tex-460-A, Part I Tex-280-F ate Tex-107-E Tex-203-F			

Table 1

. .

1. Surface Aggregate Classification of "A" is required unless otherwise shown on the plans.

2. Used to estimate the magnesium sulfate soundness loss in accordance with Section 347.2.1.1.2., "Micro-Deval Abrasion."

3. Only applies to crushed gravel.

4. The Department may perform <u>Tex-252-F</u> on fine aggregates not meeting this minimum

requirement. Fine aggregates with a methylene blue value of 10.0 mg/g or less may be used.

5. Optional test.

Gradation Requirements for Fine Aggregate		
Sieve Size % Passing by Wt. or Volume		
3/8"	100	
#8	70–100	
#200	0–30	

Table 2 Gradation Requirements for Fine Aggregate

2.2.

Mineral Filler. Mineral filler consists of finely divided mineral matter such as agricultural lime, crusher fines, or hydrated lime. Mineral filler is allowed unless otherwise shown on the plans. Fly ash is not permitted unless otherwise shown on the plans. Use no more than 2% hydrated lime unless otherwise shown on the plans. Test all mineral fillers, except hydrated lime and fly ash, in accordance with <u>Tex-107-E</u> to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

- is dry enough, free-flowing, and free of clumps and foreign matter, as determined by the Engineer;
- does not exceed 3% linear shrinkage when tested in accordance with <u>Tex-107-E</u>; and

Table 3

meets the gradation requirements shown in Table 3, unless otherwise shown on the plans

Gradation Requirements for Mineral Filler			
Sieve Size % Passing by Wt. or Volume			
#8	100		
#200	55–100		

2.3.

Baghouse Fines. Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.

- 2.4. **Asphalt Binder**. Furnish performance-graded (PG) asphalt binder with a high-temperature grade of PG 76 and low-temperature grade as shown on the plans, in accordance with Section 300.2.11., "Performance-Graded Binders."
- 2.5. **Tack Coat**. Furnish CSS-1H, SS-1H, EBL, or a PG binder with a minimum high temperature grade of PG 58 for tack coat binder in accordance with Item 300, "Asphalts, Oils, and Emulsions." Specialized tack coat materials listed on the MPL for Tracking Resistant Asphalt Interlayer (TRAIL) will be allowed or required when shown on the plans. The Engineer may suspend paving operations until there is adequate coverage. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required in conformance with the manufacturer's recommendation for approved TRAIL products on the MPL.
- 2.6. **Additives.** Use the type of additive specified when shown on the plans. Use the rate of additive specified in conformance with the manufacturer's recommendation. Additives that facilitate mixing and compaction or improve the quality of the mixture are allowed when approved. Provide the Engineer with documentation, such as the bill of lading showing the quantity of additives used in the project, unless otherwise directed.
- 2.6.1. Lime and Liquid Antistripping Agent. Lime or liquid antistripping agent is required when shown on the plans. When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Use no more than 1% hydrated lime when using crushed gravel. Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.
- 2.6.2. **Compaction Aid**. Compaction aid is defined as a Department-approved chemical warm mix additive, denoted as "chemical additive" on the MPL, that is used to facilitate mixing and compaction of hot-mix asphalt (HMA) at a discharge temperature greater than 275°F.

Compaction aid is allowed for use on all projects. Compaction aid is required when shown on the plans or as required in Section 347.4.7.1., "Weather Conditions."

Warm-mix foaming processes, denoted as "foaming process" on the MPL, may be used to facilitate mixing and compaction of HMA at target discharge temperatures greater than 275°F; however, warm-mix foaming processes are not defined as a compaction aid.

2.7. **Recycled Materials**. Recycled materials are not allowed for use.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement." Provide a means to calibrate the asphalt mass flow meter onsite when a meter is used.

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests in accordance with the Specification, the Contractor may perform other QC tests as deemed necessary. At any time during the project, the Engineer may perform production and placement tests as deemed necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. **Certification**. Personnel certified by the Department-approved HMA certification program must conduct all mixture designs, sampling, and testing shown in Table 4. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2 certified specialist. Provide Level 1A certified specialists at the plant during production operations. Provide Level 1B certified specialists to conduct placement tests. Provide AGG101-certified specialists for aggregate testing.

Test Meth	l able 4 lods, Test Responsibility, a	nd Min Certificat	ion Levels	
Test Description	Test Method	Contractor	Engineer	Level ¹
	Aggregate Te			
Sampling	<u>Tex-221-F</u>	 ✓ 	<u>√</u>	1A/AGG101
Dry sieve	Tex-200-F, Part I	√	✓	1A/AGG101
Washed sieve	Tex-200-F, Part II	 ✓ 	<u>√</u>	1A/AGG101
Deleterious material	Tex-217-F, Part I	 ✓ 	✓	AGG101
Decantation	Tex-217-F, Part II	\checkmark	✓	AGG101
Los Angeles abrasion	<u>Tex-410-A</u>	-	<u> </u>	Department
Magnesium sulfate soundness	<u>Tex-411-A</u>	-	<u>√</u>	Department
Micro-Deval abrasion	<u>Tex-461-A</u>	-	✓	AGG101
Crushed face count	<u>Tex-460-A</u>	✓	√	AGG101
Flat and elongated particles	<u>Tex-280-F</u>	✓	✓	AGG101
Linear shrinkage	<u>Tex-107-E</u>	\checkmark	✓	AGG101
Sand equivalent	<u>Tex-203-F</u>	✓	\checkmark	AGG101
Methylene blue test	<u>Tex-252-F</u>	-	\checkmark	Department
Bulk specific gravity	<u>Tex-201-F</u>	\checkmark	\checkmark	AGG101
Organic impurities	<u>Tex-408-A</u>	\checkmark	✓	AGG101
	Asphalt Binder and Tack	Coat Sampling		
Asphalt binder sampling	Tex-500-C, Part II	\checkmark	\checkmark	1A/1B
Tack coat sampling	Tex-500-C, Part III	\checkmark	\checkmark	1A/1B
	Mix Design and Ve	erification		
Design and JMF changes	<u>Tex-204-F</u>	\checkmark	\checkmark	2
Mixing	<u>Tex-205-F</u>	\checkmark	✓	2
Molding (SGC)	Tex-241-F	✓	✓	1A
Laboratory-molded density	Tex-207-F, Part I and Part VI	✓	\checkmark	1A
Rice gravity	Tex-227-F, Part II	\checkmark	✓	1A
Drain-down	Tex-235-F	✓	✓	1A
Ignition oven correction factors ²	Tex-236-F, Part II	\checkmark	\checkmark	1A
Overlay test	<u>Tex-248-F</u>		\checkmark	Department
Hamburg wheel test	Tex-242-F	\checkmark	\checkmark	1A
Witnessing mixing of correction factors	Tex-236-F, Part III	_	✓	Department
Boil test	Tex-530-C	 Image: A start of the start of	✓	1A
	Production Te	estina		173
Selecting production random		sung		
numbers	<u>Tex-225-F</u> , Part I	-	\checkmark	1A
Mixture sampling	Tex-222-F	✓	✓	1A/1B
Molding (SGC)	Tex-241-F	✓	✓ ✓	1A
Laboratory-molded density	Tex-207-F, Parts I and	· •	· ·	1A
Eaboratory molded density	Part VI			173
Rice gravity	Tex-227-F, Part II	✓	\checkmark	1A
Gradation and asphalt binder				
content ²	Tex-236-F, Part I	\checkmark	\checkmark	1A
Drain-down	Tex-235-F	✓	✓	1A
Control charts	<u>Tex-233-F</u>	\checkmark	\checkmark	1A
Moisture content	<u>Tex-212-F</u> , Part II	✓	✓	1A/AGG101
Hamburg wheel test	<u>Tex-242-F</u>	✓	✓	1A
Overlay test	Tex-248-F	· ✓	 ✓	Department
Micro-Deval abrasion	Tex-461-A	-	 ✓	AGG101
Boil test	<u>Tex-530-C</u>	✓	· · · · · · · · · · · · · · · · · · ·	1A
Abson recovery	Tex-211-F	-	 ✓	Department
7.00011000V01y	Placement Te		-	Dopartment
Establish rolling pattern	Tex-207-F, Part IV	√		1B
In-place density (nuclear method)	<u>Tex-207-F</u> , Part III	✓ ✓		1B 1B
Control charts	Tex-233-F	✓ ✓		1A
		✓ ✓		Note ³
Ride quality measurement	<u>Tex-1001-S</u>	✓ ✓	$\overline{\checkmark}$	
Thermal profile	<u>Tex-244-F</u>	v	v	1B

Table 4

Test Desc	cription	Test Method	Contractor	Engineer	Level ¹
Water flow test		<u>Tex-246-F</u>	\checkmark	\checkmark	1B
 Levels 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program. 			Asphalt Center		
2. Refer to Section 347.4.9.2.3., "Production Testing," for exceptions to using an ignition oven.			gnition oven.		
 Profiler and operator are required to be certified at the Texas A&M Transportation Institute facili when surface test Type B is specified. 			ion Institute facility		

4.2. **Reporting and Responsibilities.** Use Department-provided templates to record and calculate all test data, including mixture design, production and placement QC and QA, control charts, and thermal profiles. Obtain the current version of the templates from the Department's website or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is as shown in Table 5, unless otherwise approved. The Engineer and the Contractor will immediately report to the other party any test result that requires suspension of production or placement or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department provided templates.

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

	Table Reporting So	•	
Description	Reported By	Reported To	To Be Reported Within
	Production Qua	lity Control	
Gradation ¹			
Asphalt binder content ¹			1 working day of completion of the
Laboratory-molded density ²	Contractor	Engineer	1 working day of completion of the sublot
Moisture content ³			Subiot
Boil test ⁴			
	Production Qualit	y Assurance	
Gradation ³			
Asphalt binder content ³			1 working day of completion of the
Laboratory-molded density ¹			
Hamburg wheel test ⁵	Engineer	Contractor	1 working day of completion of the sublot
Overlay test ⁵			Subiot
Boil test ⁴			
Binder tests ⁵			
	Placement Qua	lity Control	
Thermal profile ¹	Contractor	Engineer	1 working day of completion of
Water flow ¹	Contractor	Engineer	the lot
	Placement Qualit	y Assurance	
Thermal profile ³			1 working day of completion of the
Aging ratio ⁵	Engineer	Contractor	1 working day of completion of the lot
Water flow			101

1. These tests are required on every sublot.

2. Optional test. When performed on split samples, report the results as soon as they become available.

3. To be performed at the frequency shown in Table 12 or as shown on the plans.

4. When shown on the plans.

5. To be reported as soon as the results become available.

Use the procedures described in <u>Tex-233-F</u> to plot the results of all QC and QA testing. Update the control charts as soon as test results for each sublot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. Quality Control Plan (QCP). Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Submit a written QCP before the mandatory pre-paving meeting. Receive approval of the QCP before beginning production. Include the following items in the QCP.

4.3.1. **Project Personnel**. For project personnel, include:

- a list of individuals responsible for QC with authority to take corrective action,
- current contact information for each individual listed, and
- current copies of certification documents for individuals performing specified QC functions.

4.3.2. Material Delivery and Storage. For material delivery and storage, include:

- the sequence of material processing, delivery, and minimum quantities to assure continuous plant operations;
- aggregate stockpiling procedures to avoid contamination and segregation;
- frequency, type, and timing of aggregate stockpile testing to assure conformance with material requirements before mixture production; and
- procedure for monitoring the quality and variability of asphalt binder

4.3.3. **Production**. For production, include:

- loader operation procedures to avoid contamination in cold bins;
- procedures for calibrating and controlling cold feeds;
- procedures to eliminate debris or oversized material;
- procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, lime, liquid antistrip, compaction aid, and foaming process);
- procedures for reporting job control test results; and
- procedures to avoid segregation and drain-down in the silo.

4.3.4. **Loading and Transporting**. For loading and transporting, include:

- type and application method for release agents, and
- truck-loading procedures to avoid segregation.

4.3.5. Placement and Compaction. For placement and compaction, include:

- proposed agenda for mandatory pre-paving meeting, including date and location;
- proposed paving plan (e.g., production rate, paving widths, joint offsets, and lift thicknesses);
- type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils;
- procedures for the transfer of mixture into the paver, while avoiding physical and thermal segregation and preventing material spillage;
- process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality;
- paver operations (e.g., speed, operation of wings, and height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and
- procedures to construct quality longitudinal and transverse joints

4.4. Mixture Design.

4.4.1. **Design Requirements**. Use the Superpave mixture design procedure provided in accordance with Tex-204-F, Part IV. Design the mixture to meet the requirements shown in Tables 1, 2, 3, 6, and 7.

Design the mixture using a Superpave Gyratory Compactor (SGC), and 50 gyrations as the design number of gyrations (Ndesign). Use a target laboratory-molded density of 96.0% to design the mixture; however, adjustments may be made to the Ndesign value shown in Table 7. The Ndesign level may be reduced to at least 35 gyrations at the Contractor's discretion.

347

Use an approved laboratory from the MPL to perform the Hamburg Wheel test and provide results with the mixture design or provide the laboratory mixture and request that the Department perform the Hamburg wheel test. Use an approved laboratory from the MPL to perform the overlay test and provide results with the mixture design or provide the laboratory mixture and request that the Department perform the overlay test. Upon receiving the sample from the Contractor, the Engineer be allowed 10 working days to provide the Contractor with Hamburg wheel test and overlay test results on the laboratory mixture design.

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design at any time during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used;
- the binder source and optimum asphalt content;
- Ndesign level used on the SGC;
- results of all applicable tests;
- the mixing and molding temperatures;
- the signature of the Level 2 person or persons that performed the design;
- the date the mixture design was performed; and
- a unique identification number for the mixture design.

Master Gradation Limits (% Passing by Wt. or Volume) and Volumetric Requirements					
Sieve Size	Coarse (TOM-C)	Fine (TOM-F)			
1/2"	100.0 ¹	100.0 ¹			
3/8"	95.0–100.0	98.0-100.0			
#4	40.0-60.0	70.0–95.0			
#8	17.0–27.0	40.0-65.0			
#16	5.0–27.0	20.0-45.0			
#30	5.0-27.0	10.0-35.0			
#50	5.0–27.0	10.0–20.0			
#200	5.0–9.0	2.0–12.0			
Asphalt Binder Content, % Min					
-	6.0	6.5			
	Design VMA, % Min				
-	16.0	16.5			
Pro	Production (Plant-Produced) VMA, % Min				
-	15.5	16.0			

Table 6

1. Defined as Max sieve size. No tolerance allowed.

Table 7	
---------	--

Laboratory Mixture Design Properties				
Mixture Property	Test Method	Requirement		
Target laboratory-molded density, % (SGC)	Tex-207 F	96.0		
Design gyrations (Ndesign for SGC)	Tex-241-F	50 ¹		
Hamburg wheel test, passes at 12.5-mm rut depth for PG 76 mixtures	Tex-242-F	20,000 Min		
Overlay test, critical fracture energy, lbin./sq. in.	Tex-248-F	1.5 Min		
Overlay test, crack progression rate	Tex-248-F	0.40 Max		
Drain-down, %	Tex-235-F	0.20 Max		

1. Adjust within the range of 35–100 gyrations when shown on the plans or specification or when mutually agreed between the Engineer and Contractor.

4.4.2. **Job-Mix Formula Approval**. The JMF is the combined aggregate gradation, Ndesign level, and target asphalt percentage used to establish target values for hot-mix production. The JMF1 is the original laboratory mixture design used to produce the trial batch. When a compaction aid or foaming process is used, JMF1 may be designed and submitted to the Engineer without including the compaction aid or foaming process.

When a compaction aid or foaming process is used, document the compaction aid or foaming process used and recommended rate in the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch, unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than two trial batches per design are required.

- 4.4.2.1. Contractor's Responsibilities.
- 4.4.2.1.1. **Providing Superpave Gyratory Compactor (SGC)**. Provide an SGC in accordance with Item 504, "Field Office and Laboratory," and make the SGC available to the Engineer for use in molding production samples.
- 4.4.2.1.2. **Gyratory Compactor Correlation Factors**. Use <u>Tex-206-F</u>, Part II, to perform a gyratory compactor correlation when the Engineer uses a different SGC. Apply the correlation factor to all subsequent production test results.
- 4.4.2.1.3. **Submitting JMF1**. Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide approximately 25 lb. of the design mixture if opting to have the Department perform the Hamburg wheel test on the laboratory mixture, and request that the Department perform the test. Provide approximately 60 lb. of the design mixture to perform the overlay test.
- 4.4.2.1.4. **Supplying Aggregates**. Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.
- 4.4.2.1.5. **Supplying Asphalt**. Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.
- 4.4.2.1.6. **Ignition Oven Correction Factors**. Notify the Engineer before performing <u>Tex-236-F</u>, Part II. Allow the Engineer to witness the mixing of ignition oven correction factor sample. Determine the aggregate and asphalt correction factors from the ignition oven in accordance with Tex-236-F, Part II.

If the Engineer witnessed the mixing of ignition oven correction factor samples, provide the Engineer with identically prepared samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for QA testing during production.

Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used, unless otherwise directed. Correction factors must be performed every 12 mo.

- 4.4.2.1.7. **Boil Test**. When shown on the plans, perform the test and retain the tested sample from <u>Tex-530-C</u> until completion of the project or as directed. Use this sample for comparison purposes during production.
- 4.4.2.1.8. **Trial Batch Production**. Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch. If applicable, include the compaction aid or foaming process for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements shown in Table 8. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.
- 4.4.2.1.9. **Trial Batch Production Equipment**. Use only equipment and materials proposed for use on the project to produce the trial batch. Provide documentation to verify the calibration or accuracy of the asphalt mass flow meter to measure the binder content. Verify that asphalt mass flow meter meets the 0.4% accuracy requirement, when applicable, in accordance with Item 520, "Weighing and Measuring Equipment." The Engineer may require that the accuracy of the mass flow meter be verified based on quantities used.

- 4.4.2.1.10. **Trial Batch Quantity**. Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.
- 4.4.2.1.11. **Number of Trial Batches**. Produce trial batches as necessary to obtain a mixture that meets the specification requirements.
- 4.4.2.1.12. **Trial Batch Sampling**. Obtain a representative sample of the trial batch and split it into three equal portions in accordance with <u>Tex-222-F</u>. Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.
- 4.4.2.1.13. **Trial Batch Testing**. Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements shown in Table 8. Ensure the trial batch mixture is also in compliance with Table 6 and Table 7. Use a Department-approved laboratory listed on the MPL to perform the Hamburg wheel test on the trial batch mixture, or request that the Department perform the Hamburg wheel test. Provide approximately 25 lb. of the trial batch mixture if opting to have the Department perform the Hamburg wheel test, and request that the Department perform the test. Obtain and provide approximately 60 lb. of trial batch mixture in sealed containers, boxes, or bags labeled with the control-section-job (CSJ) number, mixture type, lot, and sublot number in accordance with <u>Tex 222-F</u> for the overlay test. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test and overlay test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.
- 4.4.2.1.14. **Development of JMF2**. After the Engineer grants full approval of JMF1, evaluate the trial batch test results, determine the optimum mixture proportions, and submit as JMF2. Adjust the asphalt binder content or gradation to achieve the specified target laboratory-molded density. The mixture produced using JMF2 must meet the requirements shown in Table 6 and Table 7. Verify that JMF2 meets the operation tolerances of JMF1 shown in Table 8.
- 4.4.2.1.15. **Mixture Production**. Use JMF2 to produce Lot 1 after receiving approval for JMF2 and passing test results on the trial batch from laboratories listed on the Hamburg wheel MPL and overlay MPL. Once JMF2 is approved, and without receiving the results from the Department's Hamburg wheel test or overlay test on the trial batch, the Contractor may proceed to Lot 1 production at their own risk.

Notify the Engineer if electing to proceed without Hamburg wheel test and overlay test results from the trial batch. Note that the Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test or overlay test to be removed and replaced at the Contractor's expense.

- 4.4.2.1.16. **Development of JMF3**. Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.
- 4.4.2.1.17. **JMF Adjustments**. If JMF adjustments are necessary to achieve the specified requirements, make the adjustments before beginning a new lot. The adjusted JMF must:
 - be provided to the Engineer in writing before the start of a new lot,
 - be numbered in sequence to the previous JMF,
 - meet the master gradation limits shown in Table 6, and
 - be within the operational tolerances of JMF2 shown in Table 8.
- 4.4.2.1.18. **Requesting Referee Testing**. Use referee testing, if needed, in accordance with Section 347.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Description	Test Method	Allowable Difference Between JMF2 and JMF1 Target ¹	Allowable Difference Between Current JMF and JMF2 ²	Allowable Difference Between Contractor and Engineer ³
Individual % retained on #8 sieve and larger			±3.04	±5.0
Individual % retained on sieves smaller than #8 and larger than #200	<u>Tex-200-F</u> or Tex-236-F	Must be within master gradation	±3.0 ⁴	±3.0
% passing the #200 sieve	01 <u>10X 200 1</u>	limits in Table 6	±2.04	±1.6
Asphalt binder content, ⁵ %	Tex-236-F	±0.36	±0.36	±0.3
Laboratory-molded density, %	Тау 207 Г	±1.0	±1.0	±1.0
Laboratory-molded bulk specific gravity	<u>Tex-207-F</u>	-	_	±0.020
VMA, % Min	<u>Tex-204-F</u>	Note 7	Note 7	_
Theoretical maximum specific (Rice) gravity	<u>Tex-227-F</u>	_	_	±0.020

Note 8

Note⁸

Table 8

JMF1 is the approved laboratory mixture design used for producing the trial batch. JMF2 is the approved mixture 1. design developed from the trial batch used to produce Lot 1.

Tex-235-F

2. Current JMF is JMF3 or higher. JMF3 is the approved mix design used to produce Lot 2.

3. Contractor may request referee testing when values exceed these tolerances.

4 When within these tolerances, mixture production gradations may fall outside the master grading limits; however, the % passing the #200 will be considered out of tolerance when outside the master grading limits.

- 5. May be obtained from asphalt meter readouts as determined by the Engineer.
- Binder content is not allowed to be outside the limits shown in Table 6. 6.

Verify that Table 6 requirements are met. 7.

Verify that Table 7 requirements are met. 8.

4.4.2.2. Engineer's Responsibilities.

Drain-down, %

- 4.4.2.2.1. Superpave Gyratory Compactor. The Engineer will use a Department SGC, calibrated in accordance with Tex-241-F, to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location.
- 4.4.2.2.2. Conditional Approval of JMF1 and Authorizing Trial Batch. The Engineer will review and verify conformance of the following information within 2 working days of receipt.
 - the Contractor's mix design report (JMF1);
 - the Department-provided overlay test results;
 - the Contractor-provided Hamburg wheel test results;
 - all required materials including aggregates, asphalt, and additives; and
 - the mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg wheel test results with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with Section 347.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after 2 working days, conditional approval of JMF1 will still be granted within 2 working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

The Contractor is authorized to produce a trial batch after the Engineer grants conditional approval of JMF1.

- 4.4.2.2.3. Hamburg Wheel and Overlay Testing of JMF1. If the Contractor requests the option to have the Department perform the Hamburg Wheel test on the laboratory mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg Wheel test requirement shown in Table 7. The Engineer will perform the overlay test and mold samples in accordance with <u>Tex-248-F</u> to verify compliance with the overlay test requirements shown in Table 7. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel and overlay test results on the laboratory mixture design.
- 4.4.2.2.4. **Ignition Oven Correction Factors**. The Engineer will determine ignition oven correction factors by one of the following options.
 - Witness the mixing of ignition oven correction factor samples by the Contractor in accordance with <u>Tex-236-F</u>, Part. II. The Engineer will use the identically prepared samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven in accordance with Tex-236-F, Part II.
 - If the Engineer does not witness the mixing of ignition oven correction factor samples, the Engineer will prepare the samples to determine the aggregate and asphalt correction factors for the ignition oven in accordance with <u>Tex-236-F</u>, Part II. Notify the Contractor before performing <u>Tex-236-F</u>, Part II. Allow the Contractor to witness the Engineer performing <u>Tex-236-F</u>, Part II.

Correction factors must be performed every 12 mo. to be used for QA testing during production.

4.4.2.2.5. **Testing the Trial Batch**. Within 1 full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements shown in Table 8. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the trial batch mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with Hamburg wheel test requirements shown in Table 7. The Engineer will mold samples for the overlay test in accordance with <u>Tex-248-F</u> to verify compliance with the overlay test requirement shown in Table 7.

The Engineer will have the option to perform <u>Tex-530-C</u> on the trial batch when shown on the plans. These results may be retained and used for comparison purposes during production.

- 4.4.2.2.6. **Full Approval of JMF1**. The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements shown in Table 6 and Table 7. The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.
- 4.4.2.2.7. **Approval of JMF2**. The Engineer will approve JMF2 within 1 working day if the mixture meets the requirements shown in Tables 6, 7, and 8.
- 4.4.2.2.8. **Approval of Lot 1 Production**. The Engineer will authorize the Contractor to proceed with JMF2 for Lot 1 production after passing test results on the trial batch are achieved from laboratories listed on the Hamburg wheel MPL and overlay MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test or overlay test on the trial batch.

If the Department-approved laboratory's sample from the trial batch fails the Hamburg wheel test or overlay test, the Engineer will suspend production until further Hamburg wheel tests or overlay tests meet the specified values. The Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test or overlay test to be removed and replaced at the Contractor's expense.

4.4.2.2.9. **Approval of JMF3 and Subsequent JMF Changes**. JMF3 and subsequent JMF changes are approved if they meet the master gradation limits and asphalt binder content in accordance with Table 6 and are within the operational tolerances of JMF2 shown in Table 8. The addition of a warm-mix asphalt (WMA) additive to facilitate mixing or as a compaction aid does not require a new laboratory mixture design or trial batch. Current JMF changes that exceed the operational tolerances of JMF2 in accordance with Table 8 may require a new laboratory mixture design, trial batch, or both.

- 4.5. Production Operations. Perform a new trial batch when the plant or plant location is changed. All asphalt source changes will require a passing Hamburg wheel result from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch. All aggregate source changes will require a new laboratory mixture design and trial batch. Take corrective action and receive approval to proceed after any production suspension for noncompliance with the specification.
- 4.5.1. Storage and Heating of Materials. Do not heat the asphalt binder above the temperatures specified in accordance with Item 300, or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and HMA discharge temperatures (in legible and discernible increments) in accordance with Item 320, unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr., unless otherwise approved.
- 4.5.2. Mixing and Discharge of Materials. Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperatures shown in Table 9. The Department will not pay for or allow placement of any mixture produced above the maximum production temperatures shown in Table 9.

Max Production Temperature			
High-Temperature Binder Grade ¹ Max Production Temperature (°F)			
PG 76	345		

Tab	ple 9
Max Production	on Temperature
	Max Production Temper

The high-temperature binder grade refers to the high-temperature grade 1. of the virgin asphalt binder used to produce the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with Tex-212-F, Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck and perform the test promptly.

4.6. Hauling Operations. Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent listed on the MPL to coat the inside bed of the truck when necessary. Do not use diesel or any release agent not listed on the MPL.

> Use equipment for hauling as defined in Section 347.4.7.3.3., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. Placement Operations. Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a hand-held thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture as discharged from the truck or material transfer device (MTD) before or as the mix enters the paver. Measure the mixture temperature at a minimum frequency of one per ten trucks, or as approved. Include an approximate station number or Global Positioning System coordinates of the location where the temperature was taken on each ticket. Ensure the mixtures meets the temperature requirements shown in Table 9. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

> Prepare the surface by removing raised pavement markers and objectionable material, such as moisture, dirt, sand, leaves, and other loose impediments, from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide within 6 in. of lane lines, are not placed in the wheel path, or will not be covered with pavement markings, or as directed.

Ensure that all finished surfaces will drain properly. Place the mixture at the rate or thickness shown on the plans. The Engineer will use the guidelines shown in Table 10 to determine the compacted lift thickness. The thickness determined is based on the rate of 110–115 lb. per square yard for each inch of pavement unless otherwise shown on the plans.

Compacted Lift Thickness				
Mixture Type Min (in.) Max (in.)				
TOM-C	0.75	1.25		
TOM-F	0.5	1.00		

Table 10

4.7.1. Weather Conditions.

4.7.1.1. When Using a Thermal Imaging System. Place mixture when the roadway is dry and the roadway surface temperature is at or above 60°F, unless otherwise approved or as shown on the plans. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 347.4.7.3.1.2., "Thermal Imaging System."

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.1.2. When Not Using a Thermal Imaging System. When using a thermal camera instead of the thermal imaging system, place mixture when the roadway surface temperature is at or above 70°F, unless otherwise approved or as shown on the plans. Measure the roadway surface temperature using a handheld thermal camera or infrared thermometer. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. The Engineer may restrict the Contractor from paving if the air temperature is 70°F and falling.

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.2. Tack Coat.

- 4.7.2.1. **Application**. Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 gal. and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply the tack coat to all surfaces that will come in contact with the subsequent HMA placement, unless otherwise directed. Apply adequate overlap of the tack coat in the longitudinal direction during placement of the mat to ensure bond of adjacent mats, unless otherwise directed. Allow adequate time for emulsion to break completely before placing any material. Prevent splattering of tack coat when placed adjacent to curb, gutter, and structures. The Engineer may suspend paving operations until there is adequate coverage. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use unless required in conformance with the manufacturer's recommendation for approved TRAIL products on the MPL.
- 4.7.2.2. Sampling. The Engineer will obtain at least one sample of the tack coat binder per project per source in accordance with <u>Tex-500-C</u>, Part III, and test it in accordance with Item 300. The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample from the asphalt distributor immediately before use. Label the can with the corresponding lot and sublot numbers; producer; producer facility location; grade; District; date sampled; all applicable bills of lading (if available); and project information, including highway and CSJ number. For emulsions, the Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in Item 300.

4.7.3. **Lay-Down Operations**. Use the placement temperatures shown in Table 11 to establish the minimum placement temperature of mixture delivered to the paving operation.

Table 11	
Min Mixture Placement Temperature	
High-Temperature	Min Placement Temperature ^{2,3}
Binder Grade ¹	(F°)
PG 76	280
1 The high temperature hinder grade refers to the high temperature	

- The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.
 The mixture temperature must be measured using a handheld
- The mixture temperature must be measured using a handher thermal camera or infrared thermometer immediately before entering MTD or paver.
- Min placement temperatures may be reduced 20°F if using a chemical WMA additive as a compaction aid, MTD with re-mixing capabilities, or paver hopper insert with re-mixing capabilities.
- 4.7.3.1. **Thermal Profile**. Use a handheld thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with <u>Tex-244-F</u>. Thermal profiles are not applicable in areas described in Section 347.4.9.3.2., "Miscellaneous Areas."

4.7.3.1.1. Thermal Segregation.

- 4.7.3.1.1.1. Moderate. Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F.
- 4.7.3.1.1.2. **Severe**. Any areas that have a temperature differential greater than 50°F.
- 4.7.3.1.2. **Thermal Imaging System**. Review the output results when a thermal imaging system is used, and provide the automated report described in <u>Tex-244-F</u> to the Engineer daily, unless otherwise directed. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system.

The Engineer may suspend paving operations if the Contractor cannot successfully modify the paving process to eliminate recurring severe thermal segregation. Density profiles are not required and not applicable when using a themal imaging system.

Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots daily or as requested.

4.7.3.1.3. **Thermal Camera**. Provide the Engineer with the thermal profile of every sublot within 1 working day of the completion of each lot. When requested by the Engineer, provide the thermal images generated using the thermal camera. Report the results of each thermal profile in accordance with Section 347.4.2., "Reporting and Responsibilities." The Engineer will use a handheld thermal camera to obtain a thermal profile at least once per project.

Take immediate corrective action to eliminate recurring moderate thermal segregation when a handheld thermal camera is used. Evaluate areas with moderate thermal segregation by performing water flow testing in accordance with <u>Tex-246-F</u>, and verify the water flow is greater than 120 sec.

Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet the requirements of this Section. Evaluate areas with severe thermal segregation by performing water flow testing in accordance with <u>Tex-246-F</u>, and verify the water flow is greater than 120 sec. Remove and replace the material in any areas that have severe thermal segregation and a failing result for water flow test unless otherwise directed.

- 4.7.3.2. **Windrow Operations**. Operate windrow pickup equipment so that when hot mix is placed in windrows, substantially all the mixture deposited on the roadbed is picked up and loaded into the paver.
- 4.7.3.3. Hauling Equipment. Use belly dump, live-bottom, or end dump trucks to haul and transfer mixture. Except for paving miscellaneous areas, end dump trucks are allowed only when used in conjunction with an MTD with remixing capability, unless otherwise approved.
- 4.7.3.4. **Screed Heaters**. Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 347.4.9.3.3., "Recovered Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.
- 4.8. Compaction. Roll the freshly placed mixture using as many steel-wheeled rollers as necessary to ensure desired compaction without excessive breakage of the aggregate, and to provide a smooth surface and uniform texture. Operate each roller in static mode for TOM-F mixtures only. Do not use pneumatic rollers. Use the control strip method in accordance with <u>Tex-207-F</u>, Part IV, to establish the rolling pattern. Thoroughly moisten the roller drums with a soap and water solution to prevent adhesion. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

Use tamps to thoroughly compact the edges of the pavement along curbs, headers, and similar structures, and in locations that will not allow thorough compaction using rollers. The Engineer may require rolling using a trench roller on widened areas, in trenches, and in other limited areas.

Test and verify that the compacted mixture meets the water flow requirements in accordance with <u>Tex-246-F</u>. Measure the water flow once per sublot at locations as directed by the Engineer. The water flow rate must be greater than 120 sec. Investigate the cause of the water flow rate test failures and take corrective actions during production and placement to ensure the water flow rate is greater than 120 sec. Suspend production if two consecutive water flow rate tests fail, unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Measure water flow to verify the mixture is adequately compacted at confined longitudinal joints in accordance with <u>Tex-246-F</u> as directed by the Engineer.

Complete all compaction operations before the pavement temperature drops below 180°F, unless otherwise allowed. The Engineer may allow compaction using a light finish roller operated in static mode for pavement temperatures below 180°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic, unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

- 4.9. Acceptance Plan. Sample and test the HMA on a lot-and-sublot basis.
- 4.9.1. **Referee Testing**. The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if a "remove and replace" condition is determined based on the Engineer's test results, or if the differences between Contractor and Engineer test results exceed the maximum allowable difference shown in Table 8 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within 5 working days after receiving test results from the Engineer. Referee tests will be performed only on the sublot in question and only for the particular tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to be reported. The Department may require the Contractor to reimburse the Department for referee tests if more than three referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

The Materials and Tests Division will determine the laboratory-molded density based on the molded specific gravity and the maximum theoretical specific gravity of the referee sample.

- 4.9.2. **Production Acceptance**.
- 4.9.2.1. **Production Lot**. A production lot consists of four equal sublots. The default quantity for Lot 1 is 500 ton; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 2,000 ton. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately three or four sublots are produced each day. The lot size will be between 500 ton and 2,000 ton. The Engineer may change the lot size before the Contractor begins any lot.
- 4.9.2.1.1. **Incomplete Production Lots**. If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Close all lots within 5 working days unless otherwise allowed.

4.9.2.2. Production Sampling.

- 4.9.2.2.1. **Mixture Sampling.** The Engineer will perform or witness the sampling of production sublots from trucks at the plant in accordance with <u>Tex-222-F</u>. The sampler will split each sample into three equal portions in accordance with <u>Tex-200-F</u> and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and "Referee" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" and
- 4.9.2.2.1.1. **Random Sample**. At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with <u>Tex-225-F</u>. Take one sample for each sublot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.
- 4.9.2.2.1.2. **Blind Sample**. For one sublot per lot, the Engineer will sample, split, and test a "blind" production sample instead of the random sample collected by the Contractor. The location of the Engineer's blind sample will not be disclosed to the Contractor before sampling. The Engineer's "blind" sample may be randomly selected in accordance with <u>Tex-225-F</u> for any sublot or selected at the discretion of the Engineer. The Engineer may sample and test an additional blind sample when the random sampling process does not result in obtaining a sample.

For one sublot per lot, the Contractor must obtain from the Engineer a "blind" production sample collected by the Engineer. If desired, the Contractor may witness the collection of blind samples. Test either the "blind" or the random sample; however, referee testing for the sublot (if applicable) will be based on a comparison of results from the "blind" sample.

- 4.9.2.2.2. Informational Methylene Blue Testing. During the project and at random, obtain and provide the Engineer with approximately 50 lb. of each fine aggregate and approximately 20 lb. of all mineral fillers used to produce the mixture. Label the samples with the CSJ number, mixture type, and approximate lot and sublot number corresponding to when the sample was taken. The Engineer will ship the samples to the Materials and Tests Division for methylene blue testing in accordance with <u>Tex-252-F</u>. Results from these tests will not be used for specification compliance.
- 4.9.2.2.3. Asphalt Binder Sampling. The Engineer will witness the Contractor obtain a 1-qt. sample of the asphalt binder for each lot of mixture produced. The Contractor must notify the Engineer when the sampling will occur. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with <u>Tex-500-C</u>, Part II. Label the can with the corresponding lot and sublot numbers, producer, producer facility location, grade District date sampled, all applicable bills of lading (if available), and project information, including highway and CSJ number. The Engineer will retain these samples for 1 yr. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample and upon request of the Contractor, the Engineer will split a sample of the asphalt binder with the Contractor.

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to the Materials and Tests Division to verify compliance with Item 300, and will retain the other split sample for 1 yr.

4.9.2.3. **Production Testing**. The Contractor and Engineer must perform production tests shown in Table 12. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances shown in Table 8 for all sublots.

Take immediate corrective action if the Engineer's laboratory-molded density on any sublot is less than 95.0% or greater than 98.0% to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

The Engineer may allow alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that <u>Tex-236-F</u>, Part I does not yield reliable results. Provide evidence that results from <u>Tex-236-F</u>, Part I are not reliable before requesting permission to use an alternate method unless otherwise directed. Use the applicable test procedure as directed if an alternate test method is allowed.

Description	Test Method	Min Contractor Testing Frequency	Min Engineer Testing Frequency	
Individual % retained on #8 sieve and larger				
Individual % retained on sieves smaller than	Tex-200-F or	1 per sublot	1 per 12 sublots	
#8 and larger than #200	<u>Tex-236-F</u>	i per subiot	i per 12 subiols	
% passing the #200 sieve				
Laboratory-molded density	Tex-207-F			
Laboratory-molded bulk-specific gravity	<u>16x-207-F</u>	-	1 per sublot	
/MA	<u>Tex-204-F</u>		i per subiot	
Moisture content	Tex-212-F, Part II	When directed		
Theoretical maximum specific (Rice) gravity	Tex-227-F, Part II	-	1 per sublot	
Asphalt binder content ¹	Tex-236-F, Part I	1 per sublot	1 per lot	
Overlay test ²	<u>Tex-248-F</u>	-	1 per project	
Hamburg wheel test	<u>Tex-242-F</u>	-	1 per project	
Thermal profile	<u>Tex-244-F</u>	1 per sublot ³	1 per project	
Asphalt binder sampling and testing ^{4,5}	Tex-500-C, Part II	-		
Tack coat sampling and testing	Tex-500-C, Part III	_		
Boil test ⁶	Tex-530-C	1 per sublot	1 per project	
Nater flow test ⁷	Tex-246-F	1 per sublot		
Methylene blue test ⁸	Tex-252-F	-		

Table 12 Production and Placement Testing Frequency

1. May be obtained from asphalt mass flow meter readouts as determined by the Engineer.

2. Use a laboratory listed on the Overlay MPL to test a sample obtained from Lot 2 or higher.

3. To be performed in the presence of the Engineer when not using the thermal imaging system, unless otherwise approved.

- 4. Sampling witnessed by the Engineer. The Engineer will retain these samples for 1 yr.
- 5. Testing performed by the Materials and Tests Division or designated laboratory.

6. When shown on the plans.

- 7. To be performed in the presence of the Engineer, unless otherwise directed.
- 8. Testing performed by the Materials and Tests Division for informational purposes only.
- 4.9.2.4. **Operational Tolerances**. Control the production process within the operational tolerances in accordance with Table 8. When production is suspended, the Engineer will allow production to resume when test results or other information indicates the next mixture produced will be within the operational tolerances.
- 4.9.2.4.1. **Gradation**. Suspend operation and take corrective action if any aggregate is retained on the maximum sieve size shown in Table 6. A sublot is defined as out of tolerance if either the Engineer's or the Contractor's test results are out of operational tolerance. Suspend production when test results for gradation exceed the operational tolerances shown in Table 8 for three consecutive sublots on the same sieve or four consecutive sublots on any sieve, unless otherwise directed. The consecutive sublots may be from more than one lot.

- 4.9.2.4.2. **Asphalt Binder Content**. A sublot is defined as out of operational tolerance if either the Engineer's or the Contractor's test results exceed the values in accordance with Table 8. Suspend production when two or more sublots within a lot are out of operational tolerance or below the minimum asphalt binder content shown in Table 6 unless otherwise directed. Suspend production and shipment of mixture if the Engineer's or Contractor's asphalt binder content deviates from the current JMF by more than 0.5% for any sublot or is less than the minimum asphalt content allowed shown in Table 6.
- 4.9.2.4.3. VMA. The Engineer will determine the VMA for every sublot. For sublots when the Engineer does not determine asphalt binder content, the Engineer will use the asphalt binder content results from QC testing performed by the Contractor to determine VMA.

Take immediate corrective action if the VMA value for any sublot is less than the minimum VMA requirement for production shown in Table 6. Suspend production and shipment of the mixture if the Engineer's VMA results on two consecutive sublots are below the minimum VMA requirement for production shown in Table 6.

Suspend production and shipment of the mixture if the Engineer's VMA result is more than 0.5% below the minimum VMA requirement for production shown in Table 6. In addition to suspending production, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment.

4.9.2.4.4. **Hamburg Wheel Test**. The Engineer may perform a Hamburg wheel test on plant-produced mixture at any time during production. Suspend production until further Hamburg wheel tests meet the specified values when the production samples fail the Hamburg wheel test criteria shown in Table 7. The Engineer may require up to the entire sublot of any mixture failing the Hamburg wheel test to be removed and replaced at the Contractor's expense.

If the Department-approved laboratory's Hamburg wheel test on plant-produced mixture results in a "remove and replace" condition, the Contractor may request that the Materials and Tests Division determine the final disposition of the material in question by re-testing the failing material.

4.9.2.5. Individual Loads of Hot Mix. The Engineer may reject individual truckloads of hot mix. When a load of hot mix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances shown in Table 8, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.3. Placement Acceptance.

- 4.9.3.1. **Placement Lot**. A placement lot consists of four placement sublots. A placement sublot consists of the area placed during a production sublot.
- 4.9.3.2. **Miscellaneous Areas**. Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations, such as driveways, mailbox turnouts, crossovers, gores, pavement repair sections less than 300 ft. The specified layer thickness is based on the rate of 110–115 lb. per square yard for each inch of pavement, unless another rate is shown on the plans. Miscellaneous areas are not subject to thermal profiles or water flow testing.
- 4.9.3.3. **Recovered Asphalt Dynamic Shear Rheometer (DSR)**. The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high-temperature performance grade of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with <u>Tex-211-F</u>.

4.9.3.4. **Irregularities**. Identify and correct irregularities, including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. The Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities if the Engineer determines that the irregularity will adversely affect pavement performance. The Engineer may also require the Contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

The Engineer may require the Contractor to immediately suspend operations if irregularities are detected or may allow the Contractor to continue operations for no more than 1 day while the Contractor is taking appropriate corrective action.

4.9.4. **Ride Quality**. Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

- 5.1. **TOM HMA**. TOM hot mix will be measured by the ton of composite mixture, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520.
- 5.2. **Tack Coat**. Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measured by the gallon applied.

The Engineer may allow the use of a metering device to determine asphalt volume used and application rate if the device is accurate within 1.5% of the strapped volume.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Section 347.5.1., "TOM HMA," will be paid for at the unit price bid for "TOM Mix" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, removing pavement marking, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 347.5.2., "Tack Coat," will be paid for at the unit price bid for "Tack Coat" of the tack coat provided. These prices are full compensation for preparation, removing pavement marking, materials, placement, equipment, labor, tools, and incidentals.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585.

Item 348 Thin Bonded Friction Course

348

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) surface course composed of a warm spray-applied polymer-modified emulsion membrane followed immediately by a compacted permeable mixture of aggregate, asphalt binder, and additives mixed hot in a mixing plant.

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met and document all material source changes when the Contractor makes a source or formulation change. The Engineer may sample and test project materials anytime during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. Aggregate. Furnish aggregates from sources that conform to the requirements shown in Table 1 and this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse or fine aggregate. Do not use intermediate or fine aggregate in permeable friction course (PFC) mixtures. Supply aggregates that meet the definitions in <u>Tex-100-E</u> for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests shown in Table 1. Document all test results in the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis in accordance with Tex-200-F, Part II.
- 2.1.1. **Coarse Aggregate**. Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for HMA listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in HMA.

For sources not listed in the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance;
- allow 30 calendar days for the Engineer to sample, test, and report results;
- use only when tested and approved; and
- once approved, do not add material to the stockpile unless otherwise allowed by the Engineer.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements apply only to aggregates used on the surface of travel lanes, unless otherwise shown on the plans. The SAC for sources in the Department's Aggregate Quality Monitoring Program (AQMP) (<u>Tex-499-A</u>) is listed in the BRSQC.

- 2.1.1.1. Blending Class A and Class B Aggregates. To prevent crushing of the Class B aggregate when blending, Class B aggregate may be blended with a Class A aggregate to meet requirements for Class A materials if:
 - the Department's BRSQC rated source soundness magnesium (RSSM) rating for the Class B aggregate is less than the Class A aggregate, or
 - the RSSM rating for the Class B aggregate is no more than 10% of the RSSM rating for the Class A aggregate.

When blending Class A and Class B aggregates to meet a Class A requirement, ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source, unless otherwise shown on the plans. Blend by volume if the bulk-specific gravities of the Class A and Class B aggregates differ by more than 0.300. Class B aggregate may be disallowed when shown on the plans.

The Engineer may perform tests anytime during production, when the Contractor blends Class A and Class B aggregates to meet a Class A requirement. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks to verify the percent of Class A aggregate retained on the No. 4 sieve. The Engineer will use the gradations supplied by the Contractor in the mixture design report as an input for the template. A failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2. **Micro-Deval Abrasion**. The Engineer will perform at least one Micro-Deval abrasion test in accordance with <u>Tex-461-A</u> for each coarse aggregate source used in the mixture design that has an RSSM loss value greater than 15 as listed in the BRSQC, unless otherwise directed. The Engineer will perform testing before the start of production and may perform additional testing anytime during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

Mg_{est.} = (RSSM)(MD_{act.}/RSMD)

where:

 $Mg_{est.}$ = magnesium sulfate soundness loss RSSM = rated source soundness magnesium $MD_{act.}$ = actual Micro-Deval percent loss RSMD = rated source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Materials and Tests Division, and additional testing may be required before granting approval.

2.1.2. Fine Aggregate. Fine aggregates consist of manufactured sands and screenings. Fine aggregate stockpiles must meet the fine aggregate properties in accordance with Table 1 and the gradation requirements in accordance with Table 2. Supply fine aggregates that are free of organic impurities. The Engineer may test the fine aggregate in accordance with <u>Tex-408-A</u> to verify the material is free of organic impurities. Do not use field sand or other uncrushed fine aggregate. Use fine aggregate from coarse aggregate sources that meet the requirements shown in Table 1, unless otherwise approved.

Requirements						
Test Method	Requirement					
Coarse Aggregate						
Tex-499-A (AQMP)	As shown on the plans					
Tex-217-F, Part I	1.0					
Tex-217-F, Part II	1.5					
Tex-461-A	Note 1					
<u>Tex-410-A</u>	30					
<u>Tex-411-A</u>	20					
Tex-460-A, Part I	95					
<u>Tex-280-F</u>	10					
regate						
Tex-203-F	45					
Tex-252-F	10.0					
Tex-408-A	Note ³					
	Tex-499-A (AQMP) Tex-217-F, Part I Tex-217-F, Part II Tex-217-F, Part II Tex-410-A Tex-410-A Tex-400-A, Part II Tex-260-A, Part I Tex-280-F regate Tex-203-F Tex-203-F Tex-252-F					

Table 1 Aggregate Quality Requirements

 Used to estimate the magnesium sulfate soundness loss in accordance with Section 348.2.1.1.2., "Micro-Deval Abrasion."

2. Only applies to crushed gravel.

3. Optional test.

Table 2					
Gradation Requirements for Fine Aggregate					

Sieve Size % Passing by Wt. or Volume					
% Passing by Wt. or Volume					
100					
70–100					
0–30					

2.2.

Mineral Filler. Mineral filler consists of finely divided mineral matter, such as agricultural lime, crusher fines, or hydrated lime. Fly ash is not allowed unless otherwise shown on the plans. Mineral filler is allowed unless otherwise shown on the plans. Use no more than 2% hydrated lime, unless otherwise shown on the plans. Test all mineral fillers except hydrated lime and fly ash in accordance with <u>Tex-252-F</u> to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

- is dry enough, free-flowing, and free of clumps and foreign matter as determined by the Engineer;
- does not exceed 3% linear shrinkage when tested in accordance with <u>Tex-107-E</u>; and
- meets the gradation requirements shown in Table 3, unless otherwise shown on the plans.

Gradation Requirements for Mineral Filler				
Sieve Size % Passing by Wt. or Volume				
#8	100			
#200	55–100			

Tabla 2

- 2.3. **Baghouse Fines**. Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.
- 2.4. **Asphalt Binder**. Furnish performance-graded (PG) asphalt binder with a high-temperature grade of PG 76 and low-temperature grade as shown on the plans, in accordance with Section 300.2.11., "Performance-Graded Binders."
- 2.5. **Membrane**. Furnish a smooth and homogeneous spray-applied underseal membrane polymer-modified emulsion (EBL) in accordance with Section 300.2.4., "Emulsified Asphalt."
- 2.6. **Additives**. Use the type and rate of additive specified when shown on the plans. Use the rate of additive specified in conformance with the manufacturer's recommendation. Additives that facilitate mixing and compaction, or improve the quality of the mixture, are allowed when approved. Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.

- 2.6.1. **Fibers**. Provide cellulose or mineral fibers when PG binder is specified. Submit written certification to the Engineer that the fibers proposed for use meet the requirements of <u>DMS-9204</u>, "Fiber Additives for Bituminous Mixtures." Fibers may be pre-blended into the binder at the asphalt supply terminal unless otherwise shown on the plans.
- 2.6.2. Lime Mineral Filler. Add lime as mineral filler at a rate of 1.0% by weight of the total dry aggregate in accordance with Item 301, "Asphalt Antistripping Agents," unless otherwise shown on the plans or waived by the Engineer based on Hamburg wheel test results. Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.
- 2.6.3. Lime and Liquid Antistripping Agent. When lime or a liquid antistripping agent is used, add in accordance with Item 301. Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum. When the plans require lime to be added as an antistripping agent, lime added as mineral filler will count toward the total quantity of lime specified.
- 2.6.4. **Compaction Aid**. Compaction aid is defined as a Department-approved chemical warm-mix additive, denoted as "chemical additive" on the MPL, that is used to facilitate mixing and compaction of HMA at a discharge temperature greater than 275°F.

Compaction aid is allowed for use on all projects. Compaction aid is required when shown on the plans or as required in Section 348.4.7.1., "Weather Conditions."

Warm-mix foaming processes, denoted as "foaming process" on the MPL, may be used to facilitate mixing and compaction of HMA at target discharge temperatures greater than 275°F; however, warm-mix foaming processes are not defined as a compaction aid.

2.7. Recycled Materials. Recycled materials are not allowed for use.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement." Provide a means to calibrate the asphalt mass flow meter onsite when a meter is used.

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required in accordance with the Specification, the Contractor may perform other QC tests as deemed necessary. Anytime during the project, the Engineer may perform production and placement tests as deemed necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. **Certification**. Personnel certified by the Department-approved HMA certification program must conduct all mixture designs, sampling, and testing in accordance with Table 4. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2-certified specialist. Provide Level 1A-certified specialists at the plant during production operations. Provide Level 1B-certified specialists to conduct placement tests. Provide Level-AGG101 certified specialists for aggregate testing.

Test Description	ds, Test Responsibility, and Mir Test Method	Contractor		Level ¹
Test Description	Aggregate Testing	Contractor	Engineer	Level
Sampling	Tex-221-F	✓	✓	1A/AGG101
Dry sieve	<u>Tex-200-F</u> , Part I	✓	· √	1A/AGG101
Washed sieve	Tex-200-F, Part II	 ✓	✓ ✓	1A/AGG101
Deleterious material	Tex-217-F, Part I and Part III	 ✓	· ✓	AGG101
Decantation	<u>Tex-217-F</u> , Part I I	 ✓	· ✓	AGG101 AGG101
Los Angeles abrasion	Tex-410-A	V	✓ ✓	Department
Magnesium sulfate soundness	Tex-411-A	_	✓ ✓	Department
Micro-Deval abrasion	Tex-461-A	-	✓ ✓	AGG101
Crushed face count	<u>Tex-460-A</u>		✓ ✓	AGG101 AGG101
		 ✓	✓ ✓	AGG101 AGG101
Flat and elongated particles	<u>Tex-280-F</u>	v	✓ ✓	
Methylene blue test	Tex-252-F		v	Department
A an half his day a smaller	Asphalt Binder and Tack Coat			14/10
Asphalt binder sampling	<u>Tex-500-C</u> , Part II	✓ ✓	✓ ✓	1A/1B
Membrane sampling	Tex-500-C, Part III	•	V	1A/1B
	Mix Design and Verificat	ion		
Design and job-mix formula (JMF) changes	<u>Tex-204-F</u>	\checkmark	~	2
Mixing	<u>Tex-205-F</u>	\checkmark	~	2
Molding (Superpave gyratory compactor [SGC])	<u>Tex-241-F</u>	\checkmark	\checkmark	1A
Laboratory-molded density	Tex-207-F, Parts I, VI, and VIII	\checkmark	\checkmark	1A
Rice gravity	Tex-227-F, Part II	\checkmark	✓	1A
Ignition oven correction factors ²	Tex-236-F, Part II	✓	✓	1A
Drain-down	<u>Tex-235-F</u>	✓	✓	1A
Hamburg wheel test	Tex-242-F	\checkmark	✓	1A
Witnessing mixing of correction factors	Tex-236-F, Part III		✓	Department
Boil test	Tex-530-C	\checkmark	✓	1A
Cantabro loss	Tex-245-F	\checkmark	✓	1A
	Production Testing		1	1
Control charts	Tex-233-F	\checkmark	✓	1A
Mixture sampling	Tex-222-F	\checkmark	✓	1A/1B
Gradation and asphalt binder content ²	Tex-236-F, Part I	\checkmark	✓	1A
Moisture content	Tex-212-F, Part II	\checkmark	✓	1A/AGG101
Hamburg wheel test	Tex-242-F	\checkmark	~	1A
Overlay test	Tex-248-F	_	✓	Department
Micro-Deval abrasion	Tex-461-A	_	✓	AGG101
Drain-down	Tex-235-F	✓	✓	1A
Boil test	<u>Tex-530-C</u>	✓	✓	1A
Abson recovery	Tex-211-F	_	✓	Department
·····	Placement Testing		I	
Establish rolling pattern	Tex-207-F, Part IV	\checkmark	_	1B
Control charts	<u>Tex-233-F</u>	✓	✓	1B 1A
Ride quality measurement	Tex-1001-S	✓	✓	Note ³
Thermal profile	Tex-244-F	✓ ×	_	1B
Water flow test	<u>Tex-246-F</u>	 ✓	-	1B 1B

Table 4

 Levels 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.
 Refer to Section 348.4.5., "Production Operations," for exceptions to using an ignition oven.
 Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when surface test Type B is specified.

4.2. **Reporting and Responsibilities.** Use Department-provided templates to record and calculate all test data, including mixture design, production and placement QC and QA, control charts, and thermal profiles. Obtain the current version of the templates from the Department's website or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is as shown in Table 5, unless otherwise approved. The Engineer and the Contractor will immediately report to the other party any test result that requires suspension of production or placement or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

T-1-1- C

Description		ng Schedule	To Do Donorfod Within	
Description	Reported By	Reported To	To Be Reported Within	
	Production	Quality Control		
Gradation ¹				
Asphalt binder content ¹				
Laboratory-molded density ¹	Contractor	Engineer	1 working day of completion of	
Moisture content ²	Contractor	LIIGIIIEEI	the sublot	
Drain-down ¹				
Boil test ⁴				
	Production Q	uality Assurance		
Gradation ²		-		
Asphalt binder content ²				
Laboratory-molded density ²				
Hamburg wheel test4	- ·	0 1 1	1 working day of completion of	
Overlay test ⁴	Engineer	Contractor	the sublot	
Boil test ³				
Drain-down ²				
Binder tests ³				
	Placement	Quality Control		
Thermal profile ¹				
Water flow ¹	Contractor	Engineer	1 working day of completion of	
Membrane application rate ²	001110000	g	the lot	
	Placement Q	uality Assurance		
Aging ratio ⁴	i lacomont q			
Water flow ²	Engineer	Contractor	1 working day of completion of	
Membrane application rate ²	Lightool	Contractor	the lot	

1. These tests are required on every sublot.

2. To be performed at the frequency shown in Table 13 or as shown on the plans.

3. When shown on the plans.

4.3.

4. To be reported as soon as the results become available.

Use the procedures described in <u>Tex-233-F</u> to plot the results of all QC and QA testing. Update the control charts as soon as test results for each sublot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

Quality Control Plan (QCP). Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Submit a written QCP before the mandatory pre-paving meeting. Receive approval of the QCP before beginning production. Include the following items in the QCP.

4.3.1.	 Project Personnel. For project personnel, include: a list of individuals responsible for QC with authority to take corrective action, current contact information for each individual listed, and current copies of certification documents for individuals performing specified QC functions.
4.3.2.	 Material Delivery and Storage. For material delivery and storage, include: the sequence of material processing, delivery, and minimum quantities to assure continuous plant operations; aggregate stockpiling procedures to avoid contamination and segregation; frequency, type, and timing of aggregate stockpile testing to assure conformance with material requirements before mixture production; and procedure for monitoring the quality and variability of asphalt binder.
4.3.3.	 Production. For production, include: loader operation procedures to avoid contamination in cold bins; procedures for calibrating and controlling cold feeds; procedures to eliminate debris or oversized material; procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, lime, liquid antistrip, compaction aid, foaming process, and fibers); procedures for reporting job control test results; and procedures to avoid segregation and drain-down in the silo.
4.3.4.	 Loading and Transporting. For loading and transporting, include: type and application method for release agents, and truck-loading procedures to avoid segregation.
4.3.5.	 Placement and Compaction. For placement and compaction, include: proposed agenda for mandatory pre-paving meeting, including date and location; proposed paving plan (e.g., production rate, paving widths, joint offsets, and lift thicknesses); type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils; procedures for the transfer of mixture into the paver while avoiding physical and thermal segregation and preventing material spillage; process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality; paver operations (e.g., speed, operation of wings, and height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and procedures to construct quality longitudinal and transverse joints.
4.4.	Mixture Design.
4.4.1.	Design Requirements. Use the PFC design procedure provided in Tex-204-F, unless otherwise shown on

the plans. Design the mixture to meet the requirements shown in Tables 1, 2, 3, 6, 7, and 8. Design the mixture using an SGC and 50 gyrations as the design number of gyrations (Ndesign).

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design anytime during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used;
- the binder source and optimum design asphalt content;
- the membrane application rate based on design volumetrics;
- results of all applicable tests;
- the mixing and molding temperatures;
- the signature of the Level 2 person or persons who performed the design;
- the date the mixture design was performed; and
- a unique identification number for the mixture design.

	Permeable Friction Course		Thin Bo	nded Frictio	tion Course	
Sieve Size	Fine (PFC-F)	Coarse (PFC-C)	Туре А	Туре В	Туре С	
3/4"	_	100.0 ¹	_	-	100 ¹	
1/2"	100.0 ¹	80.0-100.0	_	100 ¹	75–100	
3/8"	95.0-100.0	35.0-60.0	100 ¹	75–100	55–80	
#4	20.0-55.0	1.0-20.0	35–55	22–36	22–36	
#8	1.0–10.0	1.0–10.0	19–30	19–30	19–30	
#16	-	-	14–25	14–24	14–24	
#50	-	_	7–14	7–14	7–14	
#200	1.0-4.0	1.0-4.0	4–6	4–6	4–6	

Table 6	
Master Gradation Limits (% Passing by Wt. or Volume)	

1. Defined as Max sieve size. No tolerance allowed.

Table 7						
Labora		Design Properties PG 76 Mixtures		Thin Bonded Friction Course		
Mixture Property	Test Method	Fine (PFC-F)	Coarse (PFC-C)	Туре А	Туре В	Туре С
Asphalt binder content, %	_	6.0-7.0	6.0-7.0	5.0-5.8	4.8-5.6	4.8-5.6
Film thickness, µ	_	_	-	9.0 Min	9.0 Min	9.0 Min
Design gyrations (Ndesign)	Tex-241-F	50	50	50	50	50
Laboratory-molded density, %	Tex-207-F	78.0 Max	82.0 Max	92.0 Max	92.0 Max	92.0 Max
Hamburg wheel test ¹ , passes @ 12.5-mm rut depth tested @ 50°C	<u>Tex-242-F</u>	10,000 Min ²	Note ³	Note ³	Note ³	Note ³
Drain-down, %	Tex-235-F	0.10 Max	0.10 Max	0.10 Max	0.10 Max	0.10 Max
Fiber content, % by wt. of total PG 76 mixture	Calculated	0.20-0.50	0.20-0.50	-	-	-
Lime content, % by wt. of total aggregate	Calculated	1.0 ⁴	1.04	Note ⁵	Note ⁵	Note ⁵
Boil test ⁶	Tex-530-C	_	-	-	-	-
Cantabro loss. %	Tex-245-F	20.0 Max	20.0 Max	20.0 Max	20.0 Max	20.0 Max

1. Mold test specimens to Ndesign at the optimum asphalt binder content.

2. May be decreased when shown on the plans.

3. No specification value is required unless otherwise shown on the plans.

4. Use lime unless otherwise shown on the plans or waived by the Engineer based on Hamburg wheel test results.

5. Lime may be required when shown on the plans.

6. When shown on the plans. Used to establish baseline for comparison to production results.

4.4.2. **Job-Mix Formula Approval.** The JMF is the combined aggregate gradation, Ndesign level, and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When a compaction aid or foaming process is used, JMF1 may be designed and submitted to the Engineer without including the compaction aid or foaming process. When a compaction aid or foaming process used and recommended rate in the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch, unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The

Department may require the Contractor to reimburse the Department for verification tests if more than two trial batches per design are required.

- 4.4.3. Contractor's Responsibilities.
- 4.4.3.1. **Providing Superpave Gyratory Compactor.** Provide an SGC in accordance with Item 504, "Field Office and Laboratory," and make the SGC available to the Engineer for use in molding production samples.
- 4.4.3.1.1. **Gyratory Compactor Correlation Factors**. Use <u>Tex-206-F</u>, Part II, to perform a gyratory compactor correlation when the Engineer uses a different SGC. Apply the correlation factor to all subsequent production test results.
- 4.4.3.1.2. **Submitting JMF1**. Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide an additional 25 lb. of the design mixture if opting to have the Department perform the Hamburg wheel test on the laboratory mixture when required in accordance with Table 7, and request that the Department perform the test.
- 4.4.3.1.3. **Supplying Aggregates**. Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.
- 4.4.3.1.4. **Supplying Asphalt**. Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.
- 4.4.3.1.5. **Ignition Oven Correction Factors**. Notify the Engineer before performing <u>Tex-236-F</u>, Part II. Allow the Engineer to witness the mixing of ignition oven correction factor sample. Determine the aggregate and asphalt correction factors from the ignition oven in accordance with <u>Tex-236-F</u>, Part II. Note that the asphalt content correction factor takes into account the percent fibers in the mixture so that the fibers are excluded from the binder content determination.

If the Engineer witnesses the mixing of the ignition oven correction factors, provide the Engineer with identically prepared samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for QA testing during production.

Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used, unless otherwise directed. Correction factors must be performed every 12 mo.

- 4.4.3.1.6. **Boil Test**. When shown on the plans, perform the test and retain the tested sample from <u>Tex-530-C</u> until completion of the project or as directed. Use this sample for comparison purposes during production.
- 4.4.3.1.7. **Trial Batch Production**. Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch. If applicable, include the compaction aid or foaming process, for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements shown in Table 8. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.
- 4.4.3.1.8. **Trial Batch Production Equipment**. Use only equipment and materials proposed for use on the project to produce the trial batch. Provide documentation to verify the calibration or accuracy of the asphalt mass flow meter to measure the binder content. Verify that asphalt mass flow meter meets the 0.4% accuracy requirement, when applicable, in accordance with Item 520, "Weighing and Measuring Equipment." The Engineer may require that the accuracy of the mass flow meter be verified based on quantities used.
- 4.4.3.1.9. **Trial Batch Quantity**. Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.

348

- 4.4.3.1.10. **Number of Trial Batches**. Produce trial batches as necessary to obtain a mixture that meets the specification requirements.
- 4.4.3.1.11. **Trial Batch Sampling**. Obtain a representative sample of the trial batch and split it into three equal portions in accordance with <u>Tex-222-F</u>. Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.
- 4.4.3.1.12. **Trial Batch Testing**. Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements shown in Table 8. Ensure the trial batch mixture is also in compliance with Table 6 and Table 7. Use a Department-approved laboratory listed on the MPL to perform the Hamburg wheel test on the trial batch mixture, or request that the Department perform the Hamburg wheel test. Provide approximately 25 lb. of the trial batch mixture if opting to have the Department perform the Hamburg wheel test, if applicable, and request that the Department perform the test. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.
- 4.4.3.1.13. **Development of JMF2**. After the Engineer grants full approval of JMF1, evaluate the trial batch test results, determine the target mixture proportions, and submit as JMF2. The mixture produced using JMF2 must meet the requirements shown in Table 6 and Table 7. Verify that JMF2 meets the operational tolerances shown in Table 8.
- 4.4.3.1.14. **Mixture Production**. Use JMF2 to produce Lot 1 after receiving approval for JMF2 and, if applicable, a passing Hamburg wheel test result on the trial batch from a laboratory listed on the MPL. Once JMF2 is approved, and without receiving the results from the Department's Hamburg wheel test on the trial batch, the Contractor may proceed to Lot 1 production at their own risk.
- 4.4.3.1.15. **Development of JMF3**. Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.
- 4.4.3.1.16. **JMF Adjustments**. If JMF adjustments are necessary to achieve the specified requirements, make the adjustments before beginning a new lot. The adjusted JMF must:
 - be provided to the Engineer in writing before the start of a new lot,
 - be numbered in sequence to the previous JMF,
 - meet the master gradation limits shown in Table 6,
 - meet the binder content limits shown in Table 7, and
 - be within the operational tolerances of JMF2 listed shown in Table 8.
- 4.4.3.1.17. **Requesting Referee Testing**. Use referee testing, if needed, in accordance with Section 348.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Description	Test Method	Allowable Difference Between JMF2 and JMF1 Target ¹	Allowable Difference Between Current JMF and JMF2 ²	
Individual % retained on sieve sized larger than #200	<u>Tex-200-F</u> or	Must be within master gradation limits in	±3.04	±5.0
% passing the #200 sieve	<u>Tex-236-F</u>	Table 6	±2.04	±3.0
Laboratory-molded density, %	<u>Tex-207-F</u> , Part VIII	±1.0	±1.0	±1.0
Asphalt binder content, 5,6 %	<u>Tex-236-F</u> , Part I	±0.37	±0.3 ⁷	±0.3
Membrane application rate	<u>Tex-247-F</u>	±0.02	±0.02	_

Table 8 Operational Tolerances				
Description	Test Method	Allowable Difference Between JMF2 and JMF1 Target ¹	Allowable Difference Between Current JMF and JMF2 ²	
dual % retained on sieve larger than #200	<u>Tex-200-F</u> or	Must be within master gradation limits in	±3.04	±5.0
ssing the #200 sieve	<u>Tex-236-F</u>	Table 6	±2.04	±3.0
ratory-molded density, %	<u>Tex-207-F</u> , Part VIII	±1.0	±1.0	±1.0
alt binder content, 5,6 %	<u>Tex-236-F,</u> Part I	±0.37	±0.3 ⁷	±0.3

JMF1 is the approved laboratory mixture design used for producing the trial batch. JMF2 is the approved mixture 1. design developed from the trial batch used to produce Lot 1.

2. Current JMF is JMF3 or higher. JMF3 is the approved mixture design used to produce Lot 2.

- Contractor may request referee testing when values exceed these tolerances. 3.
- 4. Aggregate gradation is not allowed to be outside the limits shown in Table 6.
- Ensure the binder content determination excludes fibers. 5.
- May be obtained from asphalt mass flow meter readouts as determined by the Engineer. 6.
- Binder content is not allowed to be outside the limits shown in Table 7. 7

4.4.4 Engineer's Responsibilities.

- 4.4.4.1. Superpave Gyratory Compactor The Engineer will use a Department SGC, calibrated in accordance with Tex-241-F, to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location.
- 4.4.4.1.1. Conditional Approval of JMF1 and Authorizing Trial Batch. The Engineer will review and verify conformance with the following information within 2 working days of receipt:
 - the Contractor's mix design report (JMF1);
 - the Contractor-provided Hamburg wheel test results, if applicable;
 - all required materials including aggregates, asphalt, and additives; and
 - the mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg wheel test results with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on the test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with Section 348.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after 2 working days, conditional approval of JMF1 will still be granted within 2 working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

The Contractor is authorized to produce a trial batch after the Engineer grants conditional approval of JMF1.

4.4.4.2. Hamburg Wheel Testing of JMF1. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the laboratory mixture, the Engineer will mold samples in accordance with Tex-242-F to verify compliance with the Hamburg wheel test requirement shown in Table 7. Upon receiving the sample from the Contractor, the Engineer will be allowed 10 working days to provide the Contractor with Hamburg wheel test results on the laboratory mixture design.

2024 Specificatio	ns 348
4.4.4.3.	 Ignition Oven Correction Factors. The Engineer will determine ignition oven correction factors by one of the following options. Witness the mixing of ignition oven correction factor samples by the Contractor in accordance with Tex-236-F, Part III. The Engineer will use the identically prepared samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven in accordance with Tex-236-F, Part II. If the Engineer does not witness the mixing of ignition oven correction factor samples, the Engineer will prepare the samples to determine the aggregate and asphalt correction factors for the ignition oven in accordance with Tex-236-F, Part II. If the Engineer does not witness the mixing of ignition oven correction factors for the ignition oven in accordance with Tex-236-F, Part II. Notify the Contractor before performing Tex-236-F, Part II. Allow the Contractor to witness the Engineer performing Tex-236-F, Part II.
	Correction factors must be performed every 12 mo. to be used for QA testing during production.
4.4.4.4.	Testing the Trial Batch . Within 1 full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements shown in Table 8. If the Contractor requests the option to have the Department perform the Hamburg wheel test on the trial batch mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg wheel test requirement shown in Table 7.
	The Engineer will have the option to perform <u>Tex-530-C</u> on the trial batch when shown on the plans. These results may be retained and used for comparison purposes during production.
4.4.4.5.	Full Approval of JMF1 . The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements shown in Tables 6, 7, and 8. The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.
4.4.4.6.	Approval of JMF2 . The Engineer will approve JMF2 within 1 working day if the mixture meets the requirements shown in Tables 6, 7, and 8.
4.4.4.7.	Approval of Lot 1 Production . The Engineer will authorize the Contractor to proceed with JMF2 for Lot 1 production after a passing Hamburg wheel test result on the trial batch is achieved from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch.
4.4.4.8.	Approval of JMF3 and Subsequent JMF Changes . JMF3 and subsequent JMF changes are approved if they meet the master gradation limits shown in Table 6, the asphalt binder content shown in Table 7, and they are within the operational tolerances of JMF2 shown in Table 8. The addition of a warm-mix asphalt (WMA) additive to facilitate mixing or as a compaction aid does not require a new laboratory mixture design or trial batch. Current JMF changes that exceed the operational tolerances of JMF2 shown in Table 8 may require a new laboratory mixture design, trial batch, or both.
4.4.4.9.	Binder Content Adjustments . For JMF2 and above, the Engineer may require the Contractor to adjust the target binder content by no more than 0.3% from the current JMF.
4.5.	Production Operations . Perform a new trial batch when the plant or plant location is changed. All source changes for asphalt will require a passing Hamburg wheel test result from a laboratory listed on the MPL. The Contractor may proceed at their own risk with Lot 1 production without the results from the Hamburg wheel test on the trial batch. All aggregate source changes will require a new laboratory mixture design and trial batch. Take corrective action and receive approval to proceed after any production suspension for noncompliance with the specification.

4.5.1. Storage and Heating of Materials. Do not heat the asphalt binder above the temperatures specified in Item 300, "Asphalts, Oils, and Emulsions," or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and HMA discharge temperatures (in legible and discernible

increments) in accordance with Item 320, unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.

4.5.2. **Mixing and Discharge of Materials**. Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperatures shown in Table 9. The Department will not pay for or allow placement of any mixture produced above the maximum production temperatures shown in Table 9.

I able 9 Max Production Temperature			
High-Temperature Max Production Temperature Binder Grade1 (°F)			
PG 76	345		

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with <u>Tex-212-F</u>, Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck and perform the test promptly.

4.6. **Hauling Operations**. Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent listed on the MPL to coat the inside bed of the truck when necessary. Do not use diesel or any release agent not listed on the MPL.

Use equipment for hauling as defined in Section 348.4.7.3.5., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. Placement Operations. Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a handheld thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture immediately before the mix enters the material transfer device (MTD) or paver. Measure the mixture temperature at a minimum frequency of one per ten trucks, or as approved. Include an approximate station number or Global Positioning System coordinates of the location where the temperature was taken on each ticket. Ensure the mixture meets the temperature requirement shown in Table 9. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Do not allow any loose mixture onto the prepared surface before application of the membrane. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide within 6 in. of lane lines, are not placed in the wheel path, or will not be covered with pavement markings, or as directed. Ensure that all finished surfaces will drain properly.

4.7.1. Weather Conditions.

4.7.1.1. When Using a Thermal Imaging System. Place mixture when the roadway surface is dry and the roadway surface temperature is at or above 60°F, unless otherwise approved or as shown on the plans. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 348.4.7.3.3., "Thermal Imaging System."

348

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.1.2. When Not Using a Thermal Imaging System. When using a thermal camera instead of the thermal imaging system, place mixture when the roadway surface temperature is at or above 70°F, unless otherwise approved or as shown on the plans. Measure the roadway surface temperature using a handheld thermal camera or infrared thermometer. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. The Engineer may restrict the Contractor from paving if the air temperature is 60°F and falling.

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.2. **Application of Membrane**. Apply the membrane at the rates shown in Table 10 unless otherwise directed. Spray the membrane using a metered mechanical pressure spray bar at a temperature of 140–180°F. Monitor the membrane application rate and adjust the rate when directed. Verify that the spray bar can apply the membrane at a uniform rate across the entire paving width. Apply adequate overlap of the tack coat in the longitudinal direction during placement of the mat to ensure bond of adjacent mats, unless otherwise directed. Unless otherwise directed, avoid tacking the vertical faces of adjacent PFC mats in the longitudinal direction to avoid restricting lateral drainage. Apply tack coat to all transverse joints. Do not let the wheels or other parts of the paving machine contact the freshly applied membrane. Do not dilute the membrane at the terminal, in the field, or at any other location before use. Do not allow any loose mixture onto the prepared surface before application of the membrane.

Membrane Application Rate Limits			
Міх Туре	Lift Thickness (in.)	Membrane Rate (gal. per square yard)	
	1-1/2	0.30-0.33	
PFC	1-1/4	0.27–0.30	
	1	0.25–0.28	
	3/4	0.22–0.25	
	3/4	0.17–0.27	
Thin bonded friction course	5/8	0.16-0.24	
	1/2	0.14–0.20	

Table 10 Membrane Application Rate Limit

- 4.7.2.1. **Non-Uniform Application of Membrane**. Stop application if it is not uniform due to streaking, ridging, pooling, or flowing off the roadway surface. Verify equipment condition including plugged nozzles on the spray bar, operating procedures, application temperature, and material properties. Determine and correct the cause of non-uniform application.
- 4.7.2.2. **Test Strips**. The Engineer may perform independent tests to confirm Contractor compliance and may require testing differences or failing results to be resolved before resuming production.

The Engineer may cease operations and require construction of test strips at the Contractor's expense if any of the following occurs.

- Non-uniformity of application continues after corrective action.
- In three consecutive shots, application rate differs by more than 0.03 gal. per square yard from the rate directed.
- Any shot differs by more than 0.05 gal. per square yard from the rate directed.

The Engineer will approve the test strip location. The Engineer may require additional test strips until the membrane application meets specification requirements.

4.7.3. **Lay-Down Operations**. Use the placement temperature in accordance with Table 11 to establish the minimum placement temperature of the mixture delivered to the paving operation.

4.7.3.1.

4.7.3.2.

4.7.3.2.1.

4.7.3.2.2.

4.7.3.3.

4.7.3.4.

4.7.3.5.

4.7.3.6.

paver is stopped.

Min Mixtu	Table 11 re Placement Temperature	
High-Temperature	Min Placement Temperature ^{2,3}	
Binder Grade ¹	(°F)	
PG 76	280	
 The high-temperature grade of the virgin asp The mixture temperature 	binder grade refers to the high-temperature shalt binder used to produce the mixture. ure must be measured using a handheld ared thermometer immediately before	
chemical WMA additiv	r. ratures may be reduced 20°F if using a re as a compaction aid, MTD with remixing nopper insert with remixing capabilities.	
	andheld thermal camera or a thermal imag n <u>Tex-244-F</u> . Thermal profiles are not appl liscellaneous Areas."	
Thermal Segregation.		
Moderate. Any areas tha	t have a temperature differential greater th	nan 25°F, but not exceeding 50°F.
Severe. Any areas that h	ave a temperature differential greater thar	n 50°F.
the automated report des	m . Review the output results when a then scribed in <u>Tex-244-F</u> to the Engineer daily sary to eliminate any recurring (moderate ystem.	, unless otherwise directed. Modify the
	end paving operations if the Contractor ca arring severe thermal segregation. Density thermal imaging system.	
	h electronic copies of all daily data files th rate temperature profile plots daily or as re	
completion of each lot. W thermal camera. Report t	le the Engineer with the thermal profile of /hen requested by the Engineer, provide t he results of each thermal profile in accor e Engineer will use a handheld thermal ca	he electronic files generated using the dance with Section 348.4.2., "Reporting
Take immediate correctiv thermal camera is used.	ve action to eliminate recurring moderate t	thermal segregation when a handheld
	take immediate corrective action to elimir me operations when the Engineer determ Section.	
	e live-bottom or end dump trucks to haul a d dump trucks are allowed only when use ise approved.	
min. The Engineer may e	f screed heaters to prevent overheating o evaluate the suspect area in accordance v Rheometer (DSR)." if the screed heater re	vith Section 348.4.9.2.7., "Recovered

Table 11			
Min Mixture Placement Temperature			

Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the

4.8. **Compaction**. Roll the freshly placed mixture using as many steel-wheeled rollers as necessary, operated in static mode, to seat the mixture without excessive breakage of the aggregate and to provide a smooth surface and uniform texture. Do not use pneumatic rollers. Use the control strip method shown in <u>Tex-207-F</u>, Part IV, to establish the rolling pattern. Thoroughly moisten the roller drums with a soap-and-water solution to prevent adhesion. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

For PFC mixtures, use <u>Tex-246-F</u> to test and verify that the compacted mixture meets the water flow requirements. Measure the water flow once per sublot at locations directed by the Engineer. The water flow rate must be less than 20 sec. Investigate the cause of the water flow rate test failures and take corrective actions during production and placement to ensure the water flow rate is less than 20 sec. Suspend production if two consecutive water flow rate tests fail, unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Complete all compaction operations before the pavement temperature drops below 180°F, unless otherwise allowed. The Engineer may allow compaction with a light finish roller operated in static mode for pavement temperatures below 180°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic, unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

- 4.9. Acceptance Plan. Sample and test the hot mix on a lot and sublot basis.
- 4.9.1. **Referee Testing**. The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if a "remove and replace" condition is determined based on the Engineer's test results, or if the differences between Contractor and Engineer test results exceed the maximum allowable difference in accordance with Table 8 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within 5 working days after receiving test results from the Engineer. Referee tests will be performed only on the sublot in question and only for the tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to be reported. The Department may require the Contractor to reimburse the Department for referee tests if more than three referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

4.9.2. **Production Acceptance**.

- 4.9.2.1. **Production Lot**. A production lot consists of four equal sublots. The default quantity for Lot 1 is 1,000 ton; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 2,000 ton. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately three–four sublots are produced each day. The lot size will be between 1,000 ton and 4,000 ton. The Engineer may change the lot size before the Contractor begins any lot.
- 4.9.2.1.1. **Incomplete Production Lots**. If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Close all lots within 5 working days unless otherwise allowed.

4.9.2.2. **Production Sampling**.

4.9.2.2.1. **Mixture Sampling**. The Engineer will perform or witness the sampling of production sublots from trucks at the plant in accordance with <u>Tex-222-F</u>. The sampler will split each sample into three equal portions in accordance with <u>Tex-200-F</u> and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain custody of the samples labeled "Engineer" and "Referee" to the Department's testing is completed.

- 4.9.2.2.1.1. **Random Sample**. At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with <u>Tex-225-F</u>. Take one sample for each sublot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.
- 4.9.2.2.1.2. Blind Sample. For one sublot per lot, the Engineer will sample, split, and test a "blind" production sample instead of the random sample collected by the Contractor. The location of the Engineer's "blind" sample will not be disclosed to the Contractor before sampling. The Engineer's "blind" sample may be randomly selected in accordance with <u>Tex-225-F</u> for any sublot or selected at the discretion of the Engineer. The Engineer may sample and test an additional blind sample when the random sampling process does not result in obtaining a sample.

For one sublot per lot, the Contractor must obtain from the Engineer a "blind" production sample collected by the Engineer. If desired, the Contractor may witness the collection of blind samples. Test either the "blind" or the random sample; however, referee testing for the sublot (if applicable) will be based on a comparison of results from the "blind" sample.

- 4.9.2.2.2. Informational Hamburg Wheel and Overlay Testing. Select one random sublot from Lot 2 or higher for Hamburg wheel and overlay testing during the first week of production. Obtain and provide the Engineer with approximately 90 lb. of mixture, sampled in accordance with <u>Tex-222-F</u>, in sealed containers, boxes, or bags labeled with the control-section-job (CSJ) number, mixture type, lot number, and sublot number. The Engineer will ship the mixture to the Materials and Tests Division for Hamburg wheel and overlay testing. Results from these tests will not be used for specification compliance.
- 4.9.2.2.3. Asphalt Binder Sampling. The Engineer will witness the Contractor obtain a 1-qt. sample of the asphalt binder for each lot of mixture produced. The Contractor will notify the Engineer when the sampling will occur. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with <u>Tex-500-C</u>, Part II. Label the can with the corresponding lot and sublot numbers, producer name, producer facility, grade, District, date sampled, all applicable bills of lading (if available), and project information, including highway and CSJ number. The Engineer will retain these samples for 1 yr. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample and upon request of the Contractor, the Engineer will split a sample of the asphalt binder with the Contractor.

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to the Materials and Tests Division to verify compliance with Item 300, and will retain the other split sample for 1 yr.

4.9.2.2.4. **Membrane Sampling**. The Engineer will obtain a 1-qt. sample of the polymer-modified emulsion for each lot of mixture produced in accordance with <u>Tex-500-C</u>, Part III. The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample. Obtain the sample at approximately the same time the mixture random sample is obtained. Label the can with the corresponding lot and sublot numbers, producer name; producer facility, grade, District, date sampled, and project information, including highway and CSJ number. The Engineer will retain these samples for 2 mo.

At least once per project, the Engineer will collect split samples of the polymer-modified emulsion. The Engineer will submit one split sample to the Materials and Tests Division to verify compliance with Item 300, and will retain the other split sample for 2 mo. The Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in Item 300.

4.9.2.3. **Production Testing**. The Contractor and Engineer must perform production tests shown in Table 12. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances shown in Table 8 for all sublots.

Anytime during production, the Engineer may require the Contractor to verify the following based on quantities used:

- lime content (within ±0.1% of JMF), when PG binder is specified; and
- fiber content (within ±0.03% of JMF), when PG binder is specified.

The Engineer may allow alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that <u>Tex-236-F</u>, Part I does not yield reliable results. Provide evidence that results from <u>Tex-236-F</u>, Part I are not reliable before requesting permission to use an alternate method unless otherwise allowed. Use the applicable test procedure as directed if an alternate test method is allowed.

Production and Placement Testing Frequency			
Description	Test Method	Min Contractor Testing Frequency	Min Engineer Testing Frequency
Individual % retained on sieves larger than #200	<u>Tex-200-F</u>	1 per sublot	1 per 12 sublots
% passing #200 sieve	or <u>Tex-236-F</u>		. p
Laboratory-molded density	Tex-207-F, Part VIII	1 per sublot	1 per lot
Asphalt binder content ¹	Tex-236-F, Part I	1 per sublot ²	1 per lot
Drain-down	<u>Tex-235-F</u>	1 per sublot	1 per 12 sublots
Boil test ³	<u>Tex-530-C</u>	1 per project	1 per project
Membrane application rate	<u>Tex-247-F</u>	1 per sublot	1 per 12 sublots
Moisture content	Tex-212-F, Part II	When directed	1 per project
Cantabro loss	<u>Tex-245-F</u>	-	1 per project
Hamburg wheel test	<u>Tex-242-F</u>	-	1 per project ⁴
Overlay test	<u>Tex-248-F</u>	-	1 per project⁵
Water flow test ⁶	<u>Tex-246-F</u>	1 per sublot	
Asphalt binder sampling ⁷	<u>Tex-500-C</u> , Part II	_	1 per project
Membrane sampling and testing	<u>Tex-500-C</u> , Part III	-	
Thermal profile	<u>Tex-244-F</u>	1 per sublot ⁸	-

Table 12	
Production and Placement Testing Frequence	cv

1. Ensure the binder content determination excludes fibers.

2. May be obtained from asphalt mass flow meter readouts as determined by the Engineer.

3. When shown on the plans.

4. When required according to mixture type and requirements shown in Table 7. When no specification value is required, testing will be performed by the Materials and Tests Division for informational purposes only.

- 5. Testing performed by the Materials and Tests Division for informational purposes only.
- 6. Required only for PFC mixtures. To be performed in the presence of the Engineer, unless otherwise directed.
- 7. Sampling performed by the Contractor. The Engineer will witness sampling and retain the samples for 1 yr.
- 8. To be performed in the presence of the Engineer when not using a thermal imaging system, unless otherwise approved.
- 4.9.2.4. **Operational Tolerances**. Control the production process within the operational tolerances shown in Table 8. When production is suspended, the Engineer will allow production to resume when test results or other information indicates the next mixture produced will be within the operational tolerances.
- 4.9.2.5. Individual Loads of Hot Mix. The Engineer may reject individual truckloads of hot mix. When a load of hot mix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances shown in Table 8, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.2.6. Placement Acceptance.

- 4.9.2.6.1. **Placement Lot**. A placement lot consists of four placement sublots. A placement sublot consists of the area placed during a production sublot.
- 4.9.2.6.2. **Miscellaneous Areas**. Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations, such as mailbox turnouts, crossovers, gores, pavement repair sections less than 300 ft., and other similar areas. The specified layer thickness is based on the rate of 90 lb. per square yard for each inch of pavement unless another rate is shown on the plans. Miscellaneous areas are not subject to thermal profiles or water flow testing.
- 4.9.2.7. Recovered Asphalt Dynamic Shear Rheometer (DSR). The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high-temperature PG of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with <u>Tex-211-F</u>.
- 4.9.2.8. **Irregularities**. Identify and correct irregularities, including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor to remove and replace (at the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities. The Engineer may also require the contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than 1 day while the Contractor is taking appropriate corrective action.

4.9.2.9. Ride Quality. Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

- 5.1. **PFC HMA**. PFC hot mix will be measured by the ton of composite hot mix, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520.
- 5.2. Thin Bonded Friction Course (TBFC) (HMA). TBFC hot mix will be measured by the ton of composite mixture, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520.
- 5.3. **Membrane**. Membrane material will be measured by volume. Membrane material will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the distributor's calibrated strap stick. The Engineer will witness all operations for volume determination. All membrane will be measured by the gallon applied, in the accepted membrane.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Section 348.5.1., "PFC HMA," will be paid for at the unit price bid for "PFC" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, removing pavement marking, materials, "TBFC HMA," will be paid for at the unit price bid for "TBFC" of the mixture type, SAC, and binder

specified. These prices are full compensation for surface preparation, removing pavement marking, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 348.5.3., "Membrane," will be paid for at the unit price bid for "Membrane" of the membrane material provided. These prices are full compensation for materials, placement, equipment, labor, tools, and incidentals.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585.

Item 350 Microsurfacing

350

1. DESCRIPTION

Furnish and place a microsurfacing system consisting of a mixture of cationic polymer-modified asphalt emulsion, mineral aggregate, mineral filler, water, and other additives.

2. MATERIALS

Furnish uncontaminated materials of uniform quality in conformance with the plans and specifications. Provide the Engineer with representative samples of all component materials for verification.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met when the Contractor makes a source or formulation change, and may require a new laboratory mixture design, trial batch, or both. The Engineer may sample and test project materials at any time during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. Cationic Polymer-Modified Asphalt Emulsion. Provide CSS-1P in accordance with Section 300.2.4., "Emulsified Asphalt." Specialized emulsions in accordance with Item 300, "Asphalts, Oils, and Emulsions," are allowed when shown on the plans.
- 2.2. Aggregate. Furnish crushed aggregate from a single source in accordance with Table 1 and Table 2. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis in accordance with <u>Tex-200-F</u>, Part II. Aggregate from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) is pre-approved for use.

For sources not listed in the Department's BRSQC:

- build an individual stockpile for each material;
- request that the Department test the stockpile for specification compliance; and
- once approved, do not add material to the stockpile unless otherwise approved.

Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources. Do not combine approved material with unapproved material. Include the amount of mineral filler added to the mix in determining the total minus No. 200 aggregate fraction.

Table 1 Master Gradation Limits (% Passing by Weight or Volume)			
Sieve Size	% Passing		
3/8"	100.0		
#4	86.0-94.0		
#8	45.0-65.0		
#16	25.0-46.0		
#30	15.0-35.0		
#50	10.0-25.0		
#100	7.0–18.0		
#200	5.0-15.0		

Aggregate quality requirements			
Property	Test Method	Requirement	
Surface aggregate classification (SAC)	Tex-499-A (AQMP)	A ¹	
Magnesium sulfate soundness, five cycles, %, Max	<u>Tex-411-A</u>	25	
Crushed face count ² , %, Min	Tex-460-A, Part I	95	
Sand equivalent, %, Min	<u>Tex-203-F</u>	70	
Acid insoluble, %, Min	<u>Tex-612-J</u>	55	

Table 2 Aggregate Quality Requirements

1. SAC of "A" is required unless otherwise shown on the plans.

2. Only applies to crushed gravel.

- 2.3. **Mineral Filler**. Provide a mineral filler that is sufficiently dry, free-flowing, and free of clumps and foreign matter consisting of non-air entrained cement in accordance with <u>DMS-4600</u>, "Hydraulic Cement," or hydrated lime in accordance with <u>DMS-6350</u>, "Lime and Lime Slurry."
- 2.4. **Water**. Provide water that is potable and free of harmful soluble salts.
- 2.5. **Other Additives**. Use approved additives as recommended by the emulsion manufacturer in the emulsion mix or in any of the component materials when necessary to adjust mix time in the field.
- 2.6. **Tack Coat**. Furnish CSS-1H or SS-1H for tack coat binder in accordance with Item 300. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use, unless required dilution rate is shown on the plans. When dilution is required, tack coat dilution must be witnessed by the Engineer.

3. EQUIPMENT

Maintain equipment in good repair and operating condition.

3.1. **Mixing Machine**. Furnish a self-propelled microsurfacing mixing machine with:

- self-loading devices to promote continuous laying operations;
 - enough storage capacity for mixture of materials;
- individual volume or weight controls that will proportion each material to be added to the mix;
- continuous flow mixing with a revolving multi-blade mixer capable of discharging the mixture on a continuous flow basis;
- opposite side driving stations;
- full hydrostatic control of the forward and reverse speed during operation;
- a water pressure system and nozzle-type spray bar immediately ahead of the spreader box and capable
 of spraying the roadway for the width of the spreader box;
- a mechanical-type spreader box equipped with paddles or other devices capable of agitating and spreading the materials throughout the box;
- a spreader box with devices capable of providing lateral movement or side shift abilities;
- a spreader box with a front seal, adjustable rear strike-off, and adjustable secondary rear strike-off; and
- an electronic monitoring system:
 - consisting of pulse sensors to measure delivery rates, radar gun to monitor distance traveled, programmable micro-controller with operator's display and input board, and on-board printer;
 - capable of recording, monitoring, and displaying the amount of aggregate, emulsion, mineral filler, water, and additives, in pounds;
 - capable of displaying and recording ratios of emulsion to aggregate, mineral filler to aggregate, additive to aggregate, water to aggregate, and application rate in pounds per square yard;
 - capable of recording the percentages of emulsion, mineral filler, water, and additive;
 - capable of printing a hard copy report on demand that displays the date and the cumulative weight
 of aggregate, emulsion, and mineral filler in pounds and the number of gallons of additive and water;
 the percentages of emulsion, mineral filler, water, and additive; and the ratios of emulsion to
 aggregate, mineral filler to aggregate, additive to aggregate, water to aggregate, and application rate
 in pounds per square yard since the last reset; and

350

• accurate to within 0.5% of actual weights and measures.

Calibrate at the beginning of each project and properly mark each control device that proportions the individual materials.

- 3.2. **Scales**. Scales used for weighing aggregates and emulsion must be in accordance with Item 520, "Weighing and Measuring Equipment." The weighing equipment for aggregates may be either a suspended hopper, a belt scale, or the mixing machine electronic system when allowed by the Engineer.
- 3.3. Asphalt Storage and Handling Equipment. Furnish a thermometer in each tank to indicate the asphalt temperature when storage tanks are continuously used. Keep equipment clean and free of leaks. Keep asphalt materials free of contamination.

4. CONSTRUCTION

Produce, transport, and place microsurfacing as specified in this Item or as shown on the plans. Provide emulsion and aggregate that are compatible so that the mixing process will completely and uniformly coat the aggregate. Ensure that the finished surface has a uniform texture and the microsurface mat is fully adhered to the underlying pavement. The Engineer may perform production tests at any time during the project, as deemed necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a pre-paving meeting with the Engineer on or before the first day of paving unless otherwise directed.

- 4.1. **Certification**. Maintain on the project at least one responsible employee certified under the AASHTO Microsurfacing Certification Program for personnel. The Department representative at the project will also have the AASHTO microsurfacing certification.
- 4.2. **Mixture Design**. Provide a mixture design meeting the proportions shown in Table 3 and Table 4. Perform the mixture design using an AASHTO-accredited laboratory experienced in the design of microsurfacing systems. Provide the Engineer with representative samples of all component materials for verification of the mixture design, unless otherwise directed. Identify additives used to control mixture set times and cohesion, as determined by design testing, and provide acceptable limits. The Materials and Tests Division will verify the mixture design to ensure it meets the minimum requirements for wet track abrasion wear value listed in Table 4. Provide the Engineer with approximately 40 lb. of each aggregate stockpile, at least 1 gal. of asphalt emulsion, at least 1 gal. of mineral filler, and sufficient quantities of any additives proposed for use.

The Engineer may accept an existing mixture design previously used on a Department project, but the mixture design may be subjected to annual verification using laboratory-produced mixes before starting the paving season. Production may begin at the Contractor's risk without receiving the results from the Department's verification if approved by the Engineer.

Changes in aggregate source, emulsion source, or mineral filler will require a new mixture design submitted for the Engineer's approval. The Engineer may require a new test strip if there is a change in aggregate source, emulsion source, or mineral filler.

Mixture Design Proportions		
Material Proportion		
Residual asphalt	6.0–9.0% by wt. of dry aggregate	
Mineral filler (hydraulic cement or hydrated lime)	0.5–3.0% by wt. of dry aggregate	
Field control additive	As required to provide control of break and cure	
Water	As required to produce proper mixture consistency	

Table 3

Mixture Design Requirements			
Property	Test Method	Requirements	
Wet track abrasion, g/sq. ft., Max wear value	<u>Tex-240-F</u> , Part V	75	
Gradation (aggregate and mineral filler)	Tex-200-F, Part II (washed)	Table 1	
Mix time, controlled to 120 sec.	Tex-240-F, Part II	Pass	
Lateral displacement	ISSA TB-147	5% Max	
Specific gravity after 1,000 cycles of 125 lb.	133A TB-147	2.10 Max	
Excessive asphalt by LWT	ISSA TB-109	50 g/ft. ²	
Sand adhesion	133A TB-109	(538 g/m ²) Max	

Table 4

4.3. Reporting, Testing, and Responsibilities. Use Department-provided templates to record and calculate all test data pertinent to production testing. Obtain the current version of the templates from the Department's website or from the Engineer. The Engineer will immediately report to the Contractor any test results that fail to meet the specification requirements.

> Note that mix placed after test results are available to the Contractor may be considered unauthorized work if the results require suspension of operations. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

- 4.4. Temporary Material Storage.
- 4.4.1. Aggregate Storage. Stockpile materials to prevent segregation or contamination. Remix stockpiles using suitable equipment when necessary to eliminate segregation. Use a scalping screen to remove oversize material while transferring aggregates to the mixing machine.
- 4.4.2. **Mineral Filler Storage.** Store the mineral filler in a manner that will keep it dry and free of contamination.
- 4.4.3. Asphalt Material Storage. Keep asphalt materials free of contamination.
- 4.5. Weather Limitations. The Contractor may pave any time the roadway has no standing water on the roadway surface, the roadway surface temperature is at least 60°F, and the ambient temperature is at least 50°F and rising. Place mixtures only when the Engineer determines the roadway surface, weather, and moisture conditions are suitable. The Engineer may restrict the Contractor from paving if the ambient temperature is below 60°F and falling. Cease placement 24 hr. before the weather forecast (National Weather Service) predicts temperatures below 32°F unless otherwise approved.
- 4.6. Surface Preparation. Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Provide a water spray immediately ahead of the spreader box when required for existing surface conditions when tack coat is not required. Apply water at a rate that will dampen the entire surface without any free-flowing water ahead of the spreader box.
- 4.7. Tack Coat. Apply tack coat uniformly at the rate directed by the Engineer when shown on the plans. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns.
- 4.8. Material Transfer. Minimize construction joints by providing continuous loading of material during placement. Remove oversized material before transferring the aggregates to the mixing machine.
- Placing. Make necessary adjustments so that the mixture will have sufficient working life to allow for proper 4.9. placement, with considerations for aggregate moisture and at the predicted ambient temperature and humidity. Spread the mixture uniformly to the lines and grades shown on the plans or as directed using a mechanical type spreader box. Shift the spreader box when necessary to maintain proper alignment. Clean the spreader box regularly to prevent buildup from occurring and to minimize clumps. Set and maintain the spreader box skids to prevent chatter in the finished mat. Prevent loss of material from the spreader box by maintaining contact between the front seal and the road surface. Adjust the rear seal to provide the desired

spread. Adjust the secondary strike-off to provide the desired surface texture. Clean strike-off regularly to prevent buildup from occurring.

- 4.10. **Curing**. Protect the finished mat from traffic until the mixture cures and will not be damaged by traffic. Adjust mixture properties according to humidity conditions and ambient temperatures to allow traffic on completed travel lanes within 1 hr. after placement with no damage to the surface. Protect locations subject to sharp turning, stopping, and starting traffic for longer periods when necessary.
- 4.11. **Production Testing**. Control the production process within the operational tolerances shown in Table 5 and Table 6. Provide access to the mixing unit discharge stream for sampling purposes. Suspend production when the Engineer's test results exceed the operational tolerances. The Engineer will allow production to resume when test results or other information indicate the next mixture produced will be within the operational tolerances shown in Table 5 and Table 6. Take corrective action to address deficiencies.

Table 5 Operational Tolerances							
Property	Test Method	Requirements Design target ±0.5					
Asphalt content, % by wt.	Tex-236-F ¹ or asphalt meter readings						

Dried to constant weight at 230 ±10°F.

Washed Gradation % Passing Operational Tolerances ¹					
Sieve Size ¹	Requirement ²				
3/8"	±5				
#4	±5				
#8	±5				
#16	±3				
#30	±3				
#50	±3				
#100	±3				
#200	±2				
1 Tay 200 E Dantill same	alad faans staal wita an balt				

		Т	able	6		
	 	A/ B		~	 	

1. <u>Tex-200-F</u>, Part II, sampled from stockpile or belt.

- Material passing #200 sieve, including the mineral filler, must conform to the limitations of the master gradation shown in Table 1.
- Gradations must meet both the master gradation band, shown in Table 1, and the operational tolerance from mixture design.

The asphalt content may be reduced below the tolerance when lean mixes are necessary for scratch and rut passes, but not less than the design minimum shown for the wet track abrasion test when approved.

- 4.12. **Workmanship**. Immediately take corrective action if microsurfacing material exhibits evidence of poor workmanship, delayed opening to traffic, or surface irregularities, including excessive scratch marks, drag marks, tears, streaks, raveling, delamination, and segregation. The Engineer may allow placement to continue for no more than 1 day of production while taking appropriate action. Suspend paving if the problem still exists after 1 day until the problem is corrected to the Engineer's satisfaction.
- 4.12.1. **Finished Surface**. Provide a finished surface with a uniform texture free of excessive scratch marks, tears, or other surface irregularities. Marks, tears, or irregularities are considered excessive if:
 - more than one is at least 1/4 in. wide and at least 10 ft. long in any 100 ft. of machine pull,
 - more than three are at least 1/2 in. wide and more than 6 in. long in any 100 ft. of machine pull, or
 - any are 1 in. wide or wider and more than 4 in. in length.
- 4.12.2. **Construction Joints**. Place mixture so that longitudinal joints on the surface course coincide with lane lines, or as directed. Provide longitudinal and transverse joints that are uniform and neat in appearance. Provide construction joints that have limited buildup and no gaps between applications. Joints with buildup will be considered acceptable if:

- no more than 1/2-in. vertical space exists between the pavement surface and a 4-ft. straightedge placed perpendicular to the longitudinal joint, and
- no more than 1/4-in. vertical space exists between the pavement surface and a 4-ft. straightedge placed perpendicular to the transverse joint.

4.12.3. **Edges**. Provide an edge along the roadway centerline, lane lines, shoulder, edge of pavement, or curb line that is uniform and neat in appearance. The edge is considered acceptable when:

- it varies no more than ±3 in. from a 100-ft. straight line on a tangent section, and
- it varies no more than ± 3 in. from a 100-ft. arc on a curved section.
- 4.13. **Miscellaneous Areas**. Use a single-batch type lay-down machine or other approved method to place materials on ramps or other short sections. Apply tack coat uniformly at the rate directed by the Engineer when shown on the plans, or lightly dampen the surface with water before placing the mix when tack coat is not required. Provide 100% coverage that is uniform in appearance and comparable to that produced by the spreader box.
- 4.14. **Ruts**. Fill ruts, utility cuts, and depressions in the existing surface in a separate pass from the final surface when shown on the plans. Fill ruts as follows.
 - Fill irregular or shallow ruts less than 1/2 in. deep with a full-width scratch coat pass. Use a rigid primary strike-off plate unless otherwise approved.
 - Fill ruts 1/2 in. deep or deeper independently using a rut-filling spreader box that is at least 5 ft. wide. Crown the spreader box to compensate for traffic compaction.
 - Fill ruts deeper than 1-1/2 in. in multiple placements unless otherwise approved.
 - Cure each lift 24 hr. before placement of the next lift when using multiple placements.
- 4.15. **Repairs**. Perform full-width repairs unless otherwise directed.
- 4.16. **Test Section**. At the beginning of the first day of production, place a test strip with a minimum length of 500 ft. meeting the mixture design tolerances to demonstrate the mixing and placement procedures. Place the test strip at the same general time of day (night or day) at which the paving is to take place. Inspect the test strip for variations in surface texture, material ratios, finished surface appearance, and ability to carry normal traffic within 60 min. The Engineer will approve or reject the test strip within 2 hr. of placement. If rejected, the Engineer may require another test strip after the Contractor corrects any deficiency. Paving may proceed after the Engineer approves the test strip.
- 4.17. **Quality Control (QC)**. Produce a mixture in conformance with the mixture design and the QC tolerances. Randomly calculate and report to the Engineer the percent asphalt content of the mixture and the yield of the aggregate from the equipment computer display readings at least three times daily.

Maintain quality, and provide to the Engineer a report and log sheet containing the following information:

- aggregate used, ton (dry);
- microsurfacing emulsion used, ton;
- bituminous materials for tack coat used, if specified, ton;
- mineral filler used, lb.;
- water used in mixture, gal.;
- additive used in mixture, gal.;
- surface area completed, sq. yd.;
- surface area application rate, dry lb. aggregate per sq. yd.; and
- percentage of emulsified asphalt based on dry aggregate.

Test the aggregate for moisture content each day before placement or when aggregate moisture changes because of rainfall events or new material delivery, or as directed. Enter the percent moisture determined in the electronic monitoring system. Report moisture content to the Engineer each day.

5. MEASUREMENT

Microsurfacing will be measured by the ton of the composite microsurfacing mixture, which includes asphalt emulsion, aggregate, and mineral filler.

- 5.1. **Aggregate**. The quantity of aggregate used in the accepted portion of work will be measured by net ticket weight of each individual load of aggregate based on dry weight of aggregate. Weigh the aggregate at the project stockpile site unless otherwise approved. Use either a suspended hopper scale or a belt scale in accordance with Item 520. The calculated weight of mineral filler based on the accepted portion of work will be used for measurement and included in the total aggregate weight.
- 5.2. **Polymer-Modified Asphalt Emulsion**. The quantity of polymer-modified asphalt emulsion in the accepted portion of work will be measured by the ton of material based on the accepted load tickets issued from the manufacturer. At the completion of the project, any unused emulsion will be weighed back and deducted from the accepted asphalt emulsion guantity delivered.
- 5.3. **Tack Coat**. Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measured by the gallon applied.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid per ton for "Microsurfacing." This price is full compensation for preparing the existing surface (including removing existing raised pavement markers); furnishing, hauling, preparing, and placing materials; and equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Tack Coat" of the tack coat provided. This price is full compensation for materials, placement, equipment, labor, tools, and incidentals.

Item 351 Flexible Pavement Structure Repair

351

1. DESCRIPTION

Repair localized sections of flexible pavement structure, including subgrade, base, and surfacing, as shown on the plans.

2. MATERIALS

Furnish materials unless otherwise shown on the plans. Provide materials of the type and grade as shown on the plans and in accordance with the following.

- Item 132, "Embankment"
- Item 204, "Sprinkling"
- Item 247, "Flexible Base"
- Item 260, "Lime Treatment (Road-Mixed)"
- Item 275, "Cement Treatment (Road-Mixed)"
- Item 276, "Cement Treatment (Plant-Mixed)"
- Item 292, "Asphalt Treatment (Plant-Mixed)"
- Item 310, "Prime Coat"
- Item 316, "Seal Coat"
- Item 330, "Limestone Rock Asphalt Pavement"
- Item 334, "Hot-Mix Cold-Laid Asphalt Concrete Pavement"
- Item 341, "Dense-Graded Hot-Mix Asphalt"
- Item 344, "Superpave Mixtures"

For asphalt concrete materials, Contractor testing and payment adjustment provisions will be waived unless otherwise shown on the plans.

3. EQUIPMENT

Furnish equipment in accordance with pertinent Items. Use of a motor grader will be permitted for asphalt concrete pavement unless otherwise shown on the plans.

4. WORK METHODS

Repair using one or more of the following operations as shown on the plans. For Contracts with callout work, begin physical repair within 24 hr. of notification unless otherwise shown on the plans. Cut neat vertical faces around the perimeter of the work area when removing pavement structure layers. Removed materials are the property of the Contractor unless otherwise shown on the plans. Dispose of removed material in conformance with federal, state, and local regulations. Provide a smooth line and grade conforming to the adjacent pavement.

- 4.1. **Removing Pavement Structure**. Remove adjacent soil and vegetation if necessary to prevent contamination of the repair area and place it in a windrow. Do not damage adjacent pavement structure during repair operations. Remove flexible pavement structure layers from work area if subgrade work is required.
- 4.2. **Preparing Subgrade**. Fill holes, ruts, and depressions using approved material. Wet, reshape, and compact the subgrade thoroughly as directed.

Remove unstable subgrade material to the depth directed and replace with an approved material where subgrade has failed.

- 4.3. **Mixing and Placing Base Material**. Place, spread, and compact material in conformance with the applicable Item to the required or directed depth. Pulverize bituminous material to a maximum dimension of 2-1/2 in., and uniformly mix with existing base to the depth shown on the plans when the material is to remain in pavement structure.
- 4.3.1. Flexible Base. Use existing base and add new flexible base as required in accordance with Item 247 and details shown on the plans to achieve required section.
- 4.3.2. Lime-Stabilized Base. Use existing base, add new flexible base, and stabilize with a minimum lime content of 3% by weight of the total mixture. Construct in accordance with Item 260 and details shown on the plans to achieve required section.
- 4.3.3. **Cement-Stabilized Base**. Use existing base, add flexible base, and stabilize with a minimum cement content of 4% by weight of the total mixture. Construct in accordance with Item 275 or Item 276 and details shown on the plans to achieve required section.
- 4.3.4. **Asphalt-Stabilized Base**. Place asphalt-stabilized base in accordance with Item 292 or Item 341 and details shown on the plans to achieve required section.
- 4.3.5. Limestone Rock Asphalt. Place in accordance with Item 330 and details shown on the plans to achieve required section.
- 4.4. **Curing Base**. Cure in conformance with the appropriate Item unless otherwise directed or approved. Maintain completed base sections until surfacing.
- 4.5. **Surfacing**. Apply surfacing to the completed base section using materials shown on the plans.
- 4.5.1. **Prime Coat**. Protect the compacted, finished, and cured flexible, lime-stabilized, or cement-stabilized base mixtures with a prime coat of the type and grade shown on the plans. Apply the prime coat at the rate shown on the plans.
- 4.5.2. **Surface Treatments**. Apply surface treatment with the type and grade of asphalt and aggregate as shown on the plans in accordance with Item 316.
- 4.5.3. **Asphalt Concrete Pavement**. Apply tack coat of the type and grade and at the rate shown on the plans unless otherwise directed. Construct in accordance with Item 330, Item 334, Item 341, or Item 344 to achieve required section.
- 4.6. **Finishing**. Regrade and compact disturbed topsoil. Clean roadway surface after repair operations.
- 4.7. **Ride Quality**. Use Surface Test Type A to determine the ride quality of the repaired areas, unless otherwise shown on the plans.

5. MEASUREMENT

This Item will be measured by the square yard. In areas where material is excavated, as directed, to depths greater than those specified on the plans, measurement will be made by dividing the actual depth of such area by the plan depth and then multiplying this figure by the area in square yard of work performed. Calculations for each repaired area will be rounded up to the nearest 1/10 sq. yd. At each repair location, the minimum area for payment purposes will be 1 sq. yd.

The minimum quantity for Contracts with callout work is 5 sq. yd. per callout unless otherwise shown on the plans.

6.

PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Flexible Pavement Structure Repair" of the specified depth. This price is full compensation for scarifying, removing, hauling, spreading, disposing of, and stockpiling existing pavement structure; removing objectionable or unstable material; furnishing and placing materials; maintaining completed section before surfacing; applying tack or prime coat; hauling, spreading, spreading, and compacting; and equipment, labor, tools, and incidentals.

Item 354 Planing and Texturing Pavement

354

1. DESCRIPTION

Plane, or plane and texture, existing asphalt concrete pavement, asphalt-stabilized base, or concrete pavement.

2. EQUIPMENT

The Engineer may require demonstration of the equipment's capabilities.

2.1. Planing Machine. Use planing machines that:

- have a minimum 6-ft. cutting width except for work areas less than 6 ft. wide;
- are self-propelled with enough power, traction, and stability to maintain an accurate depth of cut and slope;
- can cut in one continuous operation: 4 in. of asphalt concrete pavement, 1 in. of concrete pavement, or a combination of 2 in. of asphalt concrete pavement and 1/2 in. of concrete pavement;
- use dual longitudinal controls capable of operating on both sides automatically from any longitudinal grade reference, which includes string line, ski, mobile string line, or matching shoe;
- use transverse controls with an automatic system to control cross slope at a given rate;
- use integral loading and reclaiming devices to allow cutting, removal, and discharge of the material into a truck in one operation; and
- include devices to control dust created by the cutting action.
- 2.2. **Manual System**. Use a manual system that can achieve a uniform depth of cut, flush to all inlets, valve covers, manholes, and other appurtenances within the paved area. Use of a manual system is allowed for areas restricted to self-propelled access and for detail pavement removal.
- 2.3. **Sweeper**. Use a street sweeper to remove cuttings and debris from the planed or textured pavement unless otherwise approved. Equip the sweeper with a water tank, a dust control spray assembly, both a pick-up and a gutter broom, and a debris hopper.

3. CONSTRUCTION

- 3.1. **Grade Reference**. Place grade reference points at maximum intervals of 50 ft. in accordance with Item 5, "Control of the Work," when required. Use the control points to set the grade reference. Support the grade reference so the maximum deflection does not exceed 1/16 in. between supports.
- 3.2. **Planing and Texturing**. Vary the speed of the machine to leave a grid or other pattern type with discontinuous longitudinal reach. Remove the pavement surface for the length, depth, and width shown on the typical section and to the established line and grades. Remove pavement to vertical lines adjacent to curbs, gutters, inlets, manholes, or other obstructions. Do not damage appurtenances or underlying pavement. Provide a planed surface that has a uniform textured appearance and riding surface. Surface should be free of gouges, continuous longitudinal grooves, ridges, oil film, and other imperfections of workmanship. Leave a uniform surface of concrete pavement free of asphalt materials when removing an asphalt concrete pavement overlay.

Provide a minimum texture depth of not less than 0.05 in. when an overlay on the planed pavement is not required. Stop planing operations when surface texture depth is not sufficient. Never damage armor joints and other appurtenances.

Provide a pavement surface that, after planing, has a smooth riding quality and is true to the established line, grade, and cross-section. Provide a pavement surface that does not vary more than 1/8 in. in 10 ft. Evaluate this criterion using a 10-ft. straightedge placed parallel to the centerline of the roadway. Deviations will be measured from the top of the texture. Correct any point in the surface not meeting this requirement.

Sweep pavement and gutter. Leave pavement and curb clean.

- 3.3. Edge Treatments. Slope vertical or near vertical longitudinal faces in the pavement surface for areas under traffic in conformance with the requirements on the plans at the end of the day. Taper transverse faces to provide an acceptable ride.
- 3.4. **Salvaged Materials**. The Contractor will retain ownership of planed materials unless otherwise shown on the plans. Stockpile salvaged materials at locations shown on the plans. Prepare the stockpile site by removing vegetation and trash and providing proper drainage. Keep salvaged paving material free of contamination during its removal, transportation, and storage. Place different types or qualities of salvaged asphalt paving material into separate stockpiles. Dispose of unsalvageable material in conformance with applicable federal, state, and local regulations.

4. MEASUREMENT

This Item will be measured by the square yard of surface area for each pavement type, including asphalt concrete pavement and concrete pavement. Measurement will be based on the depth shown for each bid item, within the limits shown on the plans, regardless of the number of passes required. Only one bid item for each pavement type will apply to any one location.

5. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Planing and Texturing Asphalt Concrete Pavement," "Planing and Texturing Concrete Pavement," "Planing Asphalt Concrete Pavement," or "Planing Concrete Pavement" of the depths specified.

The planing of concrete pavement to remove all asphalt concrete pavement in accordance with Article 354.3., "Construction," will be subsidiary to the planing of asphalt concrete pavement of the depth shown on the plans.

This price is full compensation for removing all material to the depth shown; texturing the pavement surface when texturing is shown in the bid item description; loading, hauling, and unloading; stockpiling or disposing of material; sweeping; tapering or sloping longitudinal or transverse joints in accordance with Section 354.3.3., "Edge Treatments"; and equipment, labor, tools, and incidentals. Demonstration work to receive approval for use of equipment will not be paid for unless work is performed in accordance with the Contract and is accepted.

Item 356 Fabric Underseal

1. DESCRIPTION

Furnish and place fabric underseal in a longitudinal, full-road-width application or over pavement joints.

2. MATERIALS

- 2.1. Longitudinal, Full-Width Underseal.
- 2.1.1. **Fabric**. Provide fabric in accordance with <u>DMS-6220</u>, "Fabric for Underseals." Use roll widths shown on the plans or as approved.
- 2.1.2. **Asphalt**. Provide the grade of asphalt shown on the plans and in accordance with Item 300, "Asphalts, Oils, and Emulsions."
- 2.1.3. Blotter. Provide screenings, natural sand, or other materials as approved.
- 2.2. **Pavement Joint Underseal**. Provide material in accordance with <u>DMS-6220</u> or <u>DMS-6260</u>, "Reinforced Fabric Joint Underseal," as specified on the plans. Use roll widths as shown on the plans or as approved.

3. EQUIPMENT

Provide applicable equipment in accordance with Item 316, "Seal Coat," for longitudinal, full-width underseal.

4. CONSTRUCTION

Apply fabric underseal when the air temperature is 60°F and above, or above 50°F and rising. Never apply when surface temperature is below 50°F. Do not apply when, according to the Engineer, weather conditions are not suitable. Measure air temperature in the shade and away from artificial heat.

- 4.1. Longitudinal, Full-Width Underseal.
- 4.1.1. **Surface Preparation**. Prepare the surface by cleaning off dirt, dust, or other debris. Set string lines for alignment if required. Remove existing raised pavement markers in conformance with the plans. Remove vegetation and blade pavement edges when shown on the plans.

4.1.2. **Asphalt Binder Application**. Apply asphalt binder:

- using an asphalt distributor unless otherwise approved,
- at the rate shown on the plans or as directed,
- within 15°F of the temperature selected by the Engineer,
- approximately 6 in. outside the fabric width, and
- using paper or other approved material at the beginning and end of each shot to construct a straight transverse joint and to prevent overlapping of the asphalt.

Match longitudinal joints with the lane lines unless otherwise approved. The Engineer may require a string line if necessary to keep joints straight with no overlapping. Never contaminate asphalt binder.

- 4.1.3. **Fabric Placement**. Align the fabric and broom or roll it in place immediately after asphalt binder application. Cut the fabric, overlap the cut fabric to create a transverse joint, and begin application again if skewed alignment occurs. Roll or broom fabric onto the asphalt binder in a manner that prevents air bubbles from forming under the fabric. Provide an alternate means of securing the edges to the pavement if wind prevents proper adherence of the fabric to the asphalt binder, especially at the edges. Cease underseal application if it is determined that wind conditions prevent proper placement.
- 4.1.3.1. **Transverse Joints**. Overlap transverse joints by at least 6 in. Make all transverse joints with the top layer in the direction of traffic if traffic is allowed directly on the underseal. Secure ends of overlapping fabric layer at transverse joints by nailing or other approved means.
- 4.1.3.2. **Longitudinal Joints**. Overlap longitudinal joints by at least 4 in. Apply additional asphalt binder to secure longitudinal fabric joints.
- 4.1.4. **Blotter**. Apply blotter as directed to the top of the underseal to absorb excess asphalt binder. Remove any excess blotter as directed.

4.2. Pavement Joint Underseal.

- 4.2.1. **Surface Preparation**. Remove dirt, dust, or other debris from all joints and from the area on both sides of the joint that will be in contact with the installed underseal. Other preparation for proper adherence may be required as shown on the plans.
- 4.2.2. **Fabric Placement**. Do not allow joints or laps in the underseal material for transverse pavement joints. Minimize underseal material joints in longitudinal pavement joints, and do not allow overlap. Center the fabric width over the joint. Apply fabric to the joint with at least 5 in. on each side or as specified on the plans. Do not allow air bubbles under the fabric.
- 4.2.2.1. **Non-Woven Fabric and Binder**. Apply asphalt binder as directed in Section 356.4.1.2., "Asphalt Binder Application." Place fabric as directed in Section 356.4.1.3., "Fabric Placement," except do not allow joints or laps in the underseal material along transverse pavement joints.
- 4.2.2.2. **Reinforced Joint Fabric**. Remove any protective coatings from the adhering layer of the fabric underseal. Roll fabric in place to ensure adherence of the self-adhering binder.

5. MEASUREMENT

- 5.1. Longitudinal, Full-Width Underseal.
- 5.1.1. **Asphalt Binder**. Asphalt binder will be measured as follows.
- 5.1.1.1. **Volume**. Volume measurements will be made at the point of application on the road as gallons used at the application temperature, as directed, in the accepted fabric underseal.
- 5.1.1.2. Weight. Weight measurements will be by the ton in accordance with Item 520, "Weighing and Measuring Equipment." At the end of the project, deduct any remaining material from quantities delivered to determine pay quantities.
- 5.1.2. **Fabric**. Fabric will be measured by the square yard based on the widths shown on the plans and the lengths measured at placement, with no allowance for overlapping at transverse and longitudinal joints.
- 5.2. **Pavement Joint Underseal**. Pavement joint underseal will be measured by the foot.

356

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Asphalt Binder" of the type and grade specified and for "Fabric" for full-width underseals and "Pavement Joint Underseal" of the product width specified for pavement joint underseals. This price is full compensation for cleaning and preparing the existing pavement, including removal of raised pavement markers; furnishing, preparing, hauling, and placing materials, including blotter; manipulation, including rolling and brooming; and equipment, labor, tools, and incidentals.

Item 358 Hot In-Place Recycling of Asphalt Concrete Surfaces

358

1. DESCRIPTION

Use the hot in-place process to recycle the existing pavement in one of the following subcategories.

- 1.1. **Recycling**. The process in which the existing asphalt pavement is heated, softened, and then milled. A recycling agent is added, and the material is thoroughly mixed and placed using a standard paving screed.
- 1.2. **Remixing**. Similar to recycling, with the addition of virgin aggregate or new hot-mix asphalt (HMA) to the recycled material. The materials are then thoroughly mixed and placed using a standard paving screed.
- 1.3. **Repaving**. Combines either recycling or remixing with an overlay of new HMA placed immediately after the recycled mixture. The new HMA layer is placed directly on the recycled layer, and both are compacted simultaneously.

All typical sections and any grade change requirements; the depth and width of recycling required; core information from the existing roadway, including pavement layers and lift thicknesses; the asphalt content and penetration value of the existing asphalt to be recycled; and any other data collected from the pavement evaluation are as shown on the plans.

2. MATERIALS

- 2.1. Recycling Agent. Furnish a recycling agent in accordance and Section 300.2.7., "Recycling Agent."
- 2.2. Hot-Mix Asphalt. If the process requires additional HMA, furnish new HMA in accordance with Section 358.4.2., "Mixture Design." Use materials in accordance with Article 341.2., "Materials," to produce the new HMA.
- 2.3. **Aggregate**. If the process requires additional aggregate, furnish aggregates in accordance with Section 358.4.2., "Mixture Design." Use aggregates in accordance with Article 341.2., "Materials."

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement."

- 3.1. **Processing Equipment**. Provide equipment that is capable of a continuous single-pass, multi-step operation, including heating; milling; introducing recycling agent, virgin materials, or HMA (if determined necessary); mixing the reclaimed material; redistributing the recycled material; placing and leveling the mix using an asphalt paver or paving screed; and compacting the mixture, in conformance with the following requirements.
- 3.1.1. **Pavement Pre-Heaters**. Supply pavement pre-heaters capable of uniformly heating the existing pavement to a temperature high enough to remove excess moisture and allow dislodging of the material to the specified depth, while minimizing the fracturing of aggregate particles. Equip heaters with an enclosed or shielded hood to prevent damage to adjacent property or vegetation. Ensure that the heaters overlap the completed adjacent lane by at least 6 in. to create a hot bond at the longitudinal joint.
- 3.1.2. **Pavement Milling Heads**. Provide milling heads for pavement recycling capable of uniformly loosening the entire pavement lane width to the depth shown on the plans. Accomplish the recycling using milling heads

that have a grade control system for each head. Ensure that the tooth spacing of the milling heads is enough to allow material to pass without excessive retention. Use equipment that can raise and lower the milling heads to recycle the material around manholes and other obstacles.

Equip the milling heads such that they can gather the heated and loosened asphalt concrete pavement. Operate the milling heads in such a manner to minimize aggregate degradation. Use milling heads that can create a windrow of the milled material ahead of the mixing chamber or subsequent milling units.

- 3.1.3. **Recycling Agent Application System**. Provide a system for adding and uniformly applying a recycling agent at the specified rate to the hot, loosened material. Control the system to within 5.0% of the target application rate. Equip the recycling agent system with positive on-and-off capabilities to prevent any dripping. Add the recycling agent during or after milling to uniformly apply the recycling agent and adequately mix with the recycled material during the mixing cycle.
- 3.1.4. **Mixing Unit**. Provide equipment with an onboard mixing chamber that can thoroughly mix the heated, reworked material with new materials. Enclose and configure the mixing chamber such that no milled material escapes or bypasses the mixer chamber. Ensure that the rotation of the mixer apparatus does not cause segregation during the mixing process.
- 3.1.5. Paving Unit. Furnish a paver or paver screed in accordance with Section 320.2.3.1., "Asphalt Paver."
- 3.2. Rollers. Provide rollers in accordance with Article 210.2., "Equipment."
- 3.3. **Broom**. Furnish rotary self-propelled power brooms. The broom should have positive control on the downward pressure applied to the surface.
- 3.4. **Field Laboratory**. Unless otherwise shown on the plans, furnish a mobile testing laboratory in accordance with <u>Tex-237-F</u> and a Level 1A-certified laboratory technician qualified under the Department's approved program. If fresh HMA is added, perform the tests necessary to control plant production.

4. CONSTRUCTION

Rehabilitate existing asphalt concrete pavement to meet the typical sections shown on the plans and the lines and grades established. The existing pavement should be heated and milled to the required depth of treatment as shown on the plans.

- 4.1. **Certification**. Personnel certified by a Department-approved hot-mix certification program must conduct all mixture designs, sampling, and testing. Supply a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made.
- 4.2. **Mixture Design**. Design a mixture to meet the requirements shown in Table 1 using a Superpave Gyratory Compactor. Compact specimens at the anticipated production temperature between 200°F and 250°F at 50 gyrations in accordance with <u>Tex-241-F</u>. The target number of gyrations may be adjusted when approved. Submit the completed mix design for approval before the start of the project. Perform additional mix designs based on road variability, as directed.
- 4.2.1. **Sampling**. Before bidding, the Engineer will provide material and pavement information obtained from roadway cores, such as layer thicknesses, gradation, asphalt content and recovered asphalt penetration of the pavement to be recycled using the Materials and Tests Division's protocol and guidelines. Additional cores may be taken by potential Bidders to obtain further information on the material to be recycled when approved. After the project is awarded, obtain an adequate amount of roadway cores throughout the project to perform the mixture design and to determine the existing condition of the roadway to account for any variability within the project limits. Evaluate the material from the roadway cores and document any existing material that could be detrimental to the process (e.g., rubber seal and fabric underseal). At least 2 in. of the existing pavement structure must remain in place following milling. Document any base or uncoated material within the layer to be recycled. Provide documentation of any of these conditions before proceeding with the mixture design.

- 4.2.2. **Job-Mix Formula Approval**. The job-mix formula (JMF) is the combined aggregate gradation and target asphalt recycling agent percentage established from the laboratory mixture design.
- 4.2.3. **Hot-Mix Asphalt**. If the process requires new HMA, use materials in accordance with Section 341.4.4., "Mixture Design," or as shown on the plans. Document in the JMF the percentage of new HMA used in the laboratory mix design submitted.
- 4.2.4. **Aggregates**. If necessary, use aggregates meeting the requirements in Article 341.2., "Materials," Table 1, or as shown on the plans.
- 4.2.5. **Additives**. Other additives may be allowed to meet the requirements shown in Table 1. When other additives are used, document the type and percentage in the mixture design submittal.

Laboratory MIX Design Properties				
Mixture Property	Test Method	Requirement		
Design gyrations (Ndesign)	<u>Tex-241-F</u>	50		
Laboratory-molded density, %	<u>Tex-207-F</u> and <u>Tex-227-F</u>	Note ¹		
Indirect tensile strength, psi ²	Tex-226-F	75–200		
Hamburg wheel Test, minimum number of passes at 12.5 mm rut depth	<u>Tex-242-F</u>	10,000		
Overlay test, critical fracture energy (CFE), lbin./sq. in.	Tex-248-F	1.0 Min ³		
Overlay test, crack progression rate (CPR)	<u>16X-240-F</u>	0.55 Max ³		
Boil Test ²	<u>Tex-530-C</u>	_		
Combined Asphalt Property	Test Method	Requirement		
Penetration, 77°F, 100 g, 5 sec.	T 49	40–80		

Table 1				
Laboratory Mix Design	Properties			

1. For informational purposes only.

2. Used to establish a baseline for comparison to production test results.

3. May be adjusted when approved.

- 4.3. **Pavement Heating**. Heat the existing pavement without charring the pavement surface and without producing undesirable pollutants. Maintain a minimum temperature of 200°F of the material immediately behind the heater. Uniformly heat the pavement surface across its full lane width such that cold milling of the pavement surface does not occur.
- 4.4. **Pavement Milling**. Mill the existing pavement to the required depth and width as shown on the plans. Do not disturb the underlying material in the existing roadway when recycling. Remove grass and other vegetation from the edge of the existing pavement to prevent contamination of the recycled bituminous material during this operation.

Use the milling heads to remove at least 3 in. laterally of the completed adjacent pass and make a square vertical cut in the heated material to achieve a hot-bonded longitudinal joint. Ensure all material across the full lane width is processed between consecutive lane passes to assure any wedges (slivers) of unprocessed materials are not left untouched by the milling heads and covered by the recycled material, unless otherwise approved.

Ensure the temperature of the milled surface directly behind the milling heads is greater than 160°F so cold milling does not occur. Clean all loosened asphalt material away using the milling heads. A milling tooth pattern must be clearly visible after milling.

Remove all material around manholes and utility structures before paving the recycled mixture to allow for the plan depth of the pavement around these structures.

Cold mill and sweep clean any areas that cannot be heated and milled by the recycling equipment. Properly tack and pave these areas of cold milling before the recycling process.

- 4.5. Addition of Recycling Agent. Incorporate the asphalt recycling agent into the hot recycled bituminous material at the rate determined by the approved mix designs. Sampling and testing during mixture production may result in varying quantities of recycling agent at different portions of the project to meet the requirements shown in Table 1. Change the recycling agent content only as approved.
- 4.6. **Placement of Recycled Material**. Spread the material using a paver and screed attached to the mixing and milling unit or a traditional paver in a separate and continuous operation meeting the requirements of Section 320.2.3.1., "Asphalt Paver." Spread the recycled material to the established lines and grades. Ensure the temperature of the recycled material behind paver is greater than 200°F.
- 4.7. **Compaction**. Uniformly compact the pavement to contain between 3.8% and 8.5% in-place air voids.

Furnish the type, size, and number of rollers required for compaction as approved and meeting the requirements of Article 210.2., "Equipment." Use a pneumatic-tire roller to seal the surface unless excessive pickup of fines occurs. Use additional rollers as required to remove any roller marks. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

On the first day of production, use the control strip method in accordance with <u>Tex-207-F</u>, Part IV, to establish the rolling pattern that will produce the desired in-place air voids unless otherwise directed.

Operate rollers in vibratory mode only when doing so does not damage the pavement. Establish a new rolling pattern when changes occur in the recycled mix or placement conditions. Adjust or cease compaction when cracking or displacement occurs. Ensure that pavement is fully compacted before allowing rollers to park on the pavement.

- 4.8. **Traffic**. Allow the compacted pavement to cool to 160°F or lower before opening to traffic unless otherwise directed. Maintain the surface of the recycled pavement in a condition suitable for the safe movement of traffic. Power broom the pavement surface to remove all loose particles as directed.
- 4.9. Irregularities. Identify and correct irregularities, including, but not limited to, segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities and areas where the mixture does not bond to the existing pavement. If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than 1 day while the Contractor takes appropriate corrective action.
- 4.10. **Curing**. A surface treatment may be allowed as the final riding surface when shown on the plans. Cure the hot in-place recycled bituminous material for at least 7 days, or as directed when HMA or another applicable surface treatment is placed as a surface course.
- 4.11. **Weather Conditions**. Unless otherwise approved, perform hot in-place recycling operations when the existing pavement surface temperature is 60°F or higher and when weather conditions and moisture conditions of the roadway surface are suitable, in the opinion of the Engineer. Measure the roadway surface temperature using a handheld infrared thermometer. The Engineer may allow mixture placement to begin before the roadway surface reaching the required temperature requirements, if conditions are such that the roadway surface will reach the required temperature within 2 hr. of beginning placement operations.

5. PRODUCTION ACCEPTANCE

5.1. **Production Lot**. Each day of production is defined as a production lot. Lots will be sequentially numbered and will correspond to each new day of production. Note that lots are not subdivided into sublots for this Specification.

- 5.2. **Production Sampling**.
- 5.2.1. **Mixture Sampling**. The Engineer may obtain mixture samples in accordance with <u>Tex-222-F</u> at any time during production.
- 5.2.2. **Recycling Agent Sampling**. The Engineer may obtain or require the Contractor to obtain 1-qt. samples of the recycling agent at any time during production in accordance with <u>Tex-500-C</u>, Part III. The Engineer may test any of the samples to verify compliance with Item 300, "Asphalts, Oils, and Emulsions."
- 5.3. **Production Testing**. The Engineer will test at the frequency shown in Table 2. The Engineer may suspend production if production tests do not meet specifications or are not within operational tolerances shown in Table 2. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

Description	Test Allowable Difference		Minimum Testing Frequency	
	Method	from JMF Target	Contractor	Engineer
Asphalt binder content, %	<u>Tex-236-F</u>	±0.5	1 per lot	1 per lot
Theoretical max spec. (Rice) gravity	<u>Tex-227-F</u>	N/A	1 per lot	1 per 5 lots
Laboratory-molded density, %	<u>Tex-207-F</u>	±1.0	1 per lot	1 per 5 lots
Hamburg Wheel-Tracking Test, 50°C, mm	<u>Tex-242-F</u>	N/A ¹	1 per 5 lots	1 per project
Overlay Test, CFE and CPR	<u>Tex-248-F</u>	N/A ²	N/A	1 per project
Boil Test	<u>Tex-530-C</u>	N/A ³	1 per lot	1 per project
Air voids	Tex-207-F	N/A ⁴	1 per lot	1 per lot

Table 2				
Operational Tolerance and Minimum Testing F	requency			

1. Hamburg values must not exceed 12.5 mm in 10,000 passes, unless otherwise directed.

2. Overlay values must not exceed the requirements for CFE and CPR in Table 1.

3. Compare with sample from mix design to determine amount of stripping.

4. In-place air voids should be between 3.8% and 8.5%.

5.4. **Total Asphalt Binder Content**. Adjust the asphalt recycling content based on mix design recommendations for varying roadway conditions to meet the requirements shown in Table 2.

6. PLACEMENT ACCEPTANCE

- 6.1. **Placement Lot**. A placement lot is defined as the area placed during a production lot (1 day's production). Placement lot numbers will correspond with production lot numbers.
- 6.2. **Placement Sampling**. Provide the equipment and means to obtain and trim roadway cores onsite. Onsite is defined as in close proximity to where the cores are taken. Obtain the cores within 1 working day of the time the placement lot is completed unless otherwise approved. Unless otherwise shown on the plans, obtain two 6-in. diameter cores side-by-side at each location selected by the Engineer for in-place air void determination. Mark the cores for identification, measure and record the untrimmed core height, and provide the information to the Engineer. The Engineer will witness the coring operation and measurement of the core thickness. Visually inspect each core and verify that the current paving layer is bonded to the underlying layer. If an adequate bond does not exist between the current and underlying layer, take corrective action to ensure that an adequate bond will be achieved during subsequent placement operations.

Trim the cores after obtaining the cores from the roadway in accordance with <u>Tex-207-F</u> if the core heights meet the minimum untrimmed shown on the plans. Trim the cores onsite in the Engineer's presence. Use a permanent marker or paint pen to record the date and lot number on each core as well as the designation as Core A or Core B. The Engineer may require additional information to be marked on the core and may choose to sign or initial the core. The Engineer will take custody of the cores immediately after they are trimmed and will retain custody of the cores until the Department's testing is completed. Before turning the trimmed cores over to the Engineer, the Contractor may elect to wrap the trimmed cores or secure them in a

manner that will reduce the risk of possible damage occurring during transport by the Engineer. After testing, the Engineer will return the cores to the Contractor.

The Engineer may elect to have the cores transported back to the Department's laboratory at the HMA plant via the Contractor's haul truck or other designated vehicle. In such cases where the cores will be out of the Engineer's possession during transport, the Engineer will use Department-provided security bags and the Roadway Core Custody protocol located on the Department's website to provide a secure means and process that protects the integrity of the cores during transport.

Instead of the Contractor trimming the cores onsite immediately after coring, the Engineer and the Contractor may mutually agree to have the trimming operations performed at an alternate location, such as a field laboratory or other similar location. In such cases, the Engineer will take possession of the cores immediately after they are obtained from the roadway and will retain custody of the cores until testing is completed. Either the Department or Contractor representative may perform trimming of the cores. The Engineer will witness all trimming operations in cases where the Contractor representative performs the trimming operation.

Dry the core holes and tack the sides and bottom immediately after obtaining the cores. Fill the hole with the same type of mixture, and properly compact the mixture. Repair core holes by other methods when approved.

- 6.3. **Placement Testing**. The Engineer may measure in-place air voids at any time during the project to verify specification compliance.
- 6.3.1. In-Place Air Voids. The Engineer will measure in-place air voids in accordance with <u>Tex-207-F</u> and <u>Tex-227-F</u>. Before drying to a constant weight, cores may be pre-dried using a Corelok or similar vacuum device to remove excess moisture. The Engineer will use the corresponding theoretical maximum specific gravity to determine the air void content of each core. The Engineer will use the average air void content of the two cores to determine the in-place air voids at the selected location.

The Engineer will use the vacuum method to seal the core if required in accordance with <u>Tex-207-F</u>. The Engineer will use the test results from the unsealed core if the sealed core yields a higher specific gravity than the unsealed core.

When the in-place air voids exceed the range of 3.8–8.5%, take immediate corrective action to bring the operation within these tolerances. The Engineer may suspend operations or require removal and replacement if the in-place air voids are less than 2.7% or greater than 9.9%. The Engineer will allow paving to resume when the proposed corrective action is likely to yield between 3.8% and 8.5% in-place air voids.

- 6.3.2. **New Hot-Mix Asphalt**. If applicable, control the quantity of new HMA added to the recycled mix from haul tickets to within 5.0% of the target JMF.
- 6.3.3. **Depth of Recycled Material**. Maintain the required nominal depth on both outside vertical faces and in the center of the recycled area. Manually measure and report recorded depths each 1/4 mi. approximately each hour of production. Measure from the bottom of the mill pass to the top of the surface placed.
- 6.4. **Ride Quality**. Use Surface Test Type A to evaluate ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

7. MEASUREMENT

Hot in-place recycling of asphalt concrete surface will be measured by the square yard. The dimensions for determining the surface areas are established by the depths and widths shown on the plans and the lengths measured at placement.

Recycling agent will be measured at the applied temperature by the gallon from strap depths measured from the calibrated strap stick for each load or other approved automated means.

358

8. PAYMENT

Hot in-place recycling of asphalt concrete surfaces will be paid for at the unit bid price for "Hot In-Place Recycling of Asphalt Concrete (Surface)" of the depth specified.

Asphalt recycling agent will be paid for separately at the unit bid price for "Hot In-Place Recycling of Asphalt Concrete (Recycling Agent)."

New HMA will be paid for at the unit price bid for "Hot In-Place Recycling of Asphalt Concrete (Mix)."

This price is full compensation for the removal and processing of the existing pavement; for preparing, hauling, and placing materials; for all freight involved; for all manipulations, including rolling and brooming; and for all labor, tools, equipment, and incidentals necessary to complete the work. This price also includes any surface treatment that is allowed on the plans but not required to complete the above work.

Item 360 Concrete Pavement

360

1. DESCRIPTION

Construct hydraulic cement concrete pavement with or without curbs on the concrete pavement.

2. MATERIALS

Use materials from non-listed sources only when tested and approved by the Engineer before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources.

2.1. **Hydraulic Cement Concrete**. Provide hydraulic cement concrete in accordance with Item 421, "Hydraulic Cement Concrete." Use compressive strength testing unless otherwise shown on the plans. Provide Class P concrete designed to meet a minimum average compressive strength of 3,200 psi at 7 days or a minimum average compressive strength of 4,000 psi at 28 days. Test in accordance with <u>Tex-418-A</u>.

Obtain written approval if the concrete mix design exceeds 520 lb. per cubic yard of cementitious material.

Use coarse aggregates for continuously reinforced concrete pavements to produce concrete with a rated coefficient of thermal expansion not more than 5.5×10^{-6} in./in./°F as listed in accordance with the *Concrete Rated Source Quality Catalog*.

Provide Class High Early Strength (HES) concrete designed to meet a minimum average compressive strength of 3,200 psi at 24 hr., for early opening of small pavement areas or leave-outs to traffic when shown on the plans or allowed. When opening of small pavement areas or leave-outs to traffic is less than 24 hr., design Class HES concrete to achieve a minimum average compressive strength of 1,800 psi at 8 hr.

- 2.2. **Reinforcing Steel**. Provide Grade 60 or above deformed steel for bar reinforcement in accordance with Item 440, "Reinforcement for Concrete." Provide positioning and supporting devices (baskets and chairs) capable of securing and holding the reinforcing steel in proper position before and during paving. Provide corrosion protection when shown on the plans.
- 2.2.1. **Dowels**. Provide dowel bars for concrete pavements in accordance with <u>DMS-7325</u>, "Dowel Bars for Concrete Pavements" and the MPL for "Dowel Bars for Concrete Pavements." Provide dowel caps filled with a soft compressible material with enough range of movement to allow complete closure of the expansion joint.
- 2.2.2. **Tie Bars**. Provide straight deformed steel tie bars. Provide either multiple-piece tie bars or single-piece tie bars as shown on the plans. Furnish multiple piece tie bar assemblies from the list of approved multiple-piece tie bars that have been prequalified in accordance with <u>DMS-4515</u>, "Multiple Piece Tie Bars for Concrete Pavement," when used. Multiple-piece tie bars used on individual projects must be sampled in accordance with Tex-711-I, and tested in accordance with Tex-712-I.
- 2.3. **Curing Materials**. Provide Type 2 membrane curing compound in accordance with <u>DMS-4650</u>, "Hydraulic Cement Concrete Curing Materials and Evaporation Retardants." Provide asphaltic curing materials in accordance with Item 300, "Asphalts, Oils, and Emulsions," for concrete pavement to be overlaid with asphalt concrete, unless otherwise shown on the plans or approved. Provide materials for other methods of curing in accordance with Item 422, "Concrete Superstructures." When required, provide insulating blankets with a minimum thermal resistance (R) rating of 0.5 degree Fahrenheit square-foot per British Thermal Unit. Use insulating blankets that are free of tears and are in good condition.

- 2.4. **Epoxy**. Provide Type III, Class C epoxy in accordance with <u>DMS-6100</u>, "Epoxies and Adhesives," for installing all drilled-in reinforcing steel. Submit a work plan and request approval for the use of epoxy types other than Type III, Class C.
- 2.5. Evaporation Retardant. Provide evaporation retardant in accordance with <u>DMS-4650</u>.
- 2.6. **Joint Sealants and Fillers**. Provide Class 5 or Class 8 joint sealant materials and fillers unless otherwise shown on the plans or approved, and other sealant materials of the size, shape, and type shown on the plans in accordance with <u>DMS-6310</u>, "Joint Sealants and Fillers."
- 2.7. **Repair Materials**. Provide concrete repair materials in accordance with <u>DMS-4655</u>, "Concrete Repair Materials," or <u>DMS-6170</u>, "Polymeric Materials for Patching Spalls in Concrete Pavement."

3. EQUIPMENT

Furnish and maintain all equipment in good working condition. Use measuring, mixing, and delivery equipment in accordance with Item 421. Obtain approval for other equipment used.

3.1. **Placing, Consolidating, and Finishing Equipment**. Provide self-propelled paving equipment that uniformly distributes the concrete with minimal segregation and provides a smooth machine-finished consolidated concrete pavement conforming to plan line and grade. Provide an automatic grade control system on slip-forming equipment. Provide mechanically operated finishing floats capable of producing a uniformly smooth pavement surface. Provide equipment capable of providing a fine, light water fog mist.

When using stringless paving equipment, use in accordance with Section 5.9.3., "Method C," and establish control points at maximum intervals of 500 ft. Use these control points as reference to perform the work.

Provide mechanically operated vibratory equipment capable of adequately consolidating the concrete. Provide immersion vibrators on the paving equipment at sufficiently close intervals to provide uniform vibration and consolidation of the concrete over the entire width and depth of the pavement and in conformance with the manufacturer's recommendations. Provide immersion vibrator units that operate at a frequency in air of at least 8,000 cycles per minute. Provide enough hand-operated immersion vibrators for timely and proper consolidation of the concrete for concrete pavement (formed) placements, and along forms, at all joints, and in areas not covered by other vibratory equipment. Surface vibrators may be used to supplement equipment-mounted immersion vibrators. Provide tachometers to verify the proper operation of all vibrators.

For small or irregular areas or when approved, the paving equipment described in this Section is not required.

3.2. Forming Equipment.

- 3.2.1. **Pavement Forms**. Provide side forms of sufficient cross-section, strength, and rigidity to support the paving equipment and resist the impact and vibration of the operation without visible springing or settlement. Use forms that are free of detrimental kinks, bends, or warps that could affect ride quality or alignment. Provide bulkhead forms of sufficient cross-section, strength, and rigidity to support reinforcing steel and maintain alignment during concrete placement operations.
- 3.3. **Curb Forms**. Provide curb forms for separately placed curbs that are not slipformed that conform to the requirements of Item 529, "Concrete Curb, Gutter, and Combined Curb and Gutter."
- 3.4. **Single-Piece Tie-Bar Inserting Equipment**. Provide inserting equipment that accurately inserts and positions reinforcing steel in the plastic concrete parallel to the profile grade and horizontal alignment as shown on the plans.

3.5. Texturing Equipment.

- 3.5.1. **Carpet Drag**. Provide a carpet drag mounted on a work bridge or a manual moveable support system. Provide a single piece of carpet of sufficient transverse length to span the full width of the pavement being placed and adjustable so that a sufficient longitudinal length of carpet is in contact with the concrete being placed to produce the desired texture. Obtain approval to vary the length and width of the carpet to accommodate specific applications.
- 3.5.2. **Tining Equipment**. Provide a self-propelled metal tine device equipped with steel tines with cross-section approximately 1/32 in. thick by 1/12 in. wide. Provide tines for longitudinal tining equipment spaced at approximately 3/4 in., center-to-center, or provide tines for transverse tining equipment spaced at approximately 1 in., center-to-center. Manual methods that produce an equivalent texture may be used when it is impractical to use self-propelled equipment, such as for small areas, narrow width sections, and emergencies due to equipment breakdown.
- 3.6. **Curing Equipment**. Provide a self-propelled machine for applying membrane curing compound using mechanically pressurized spraying equipment with atomizing nozzles. Provide equipment and controls that maintain the required uniform rate of application over the entire paving area. Hand-operated pressurized spraying equipment with atomizing nozzles may only be used on small or irregular areas, on narrow width sections, or in emergencies due to equipment breakdown.
- 3.7. **Sawing Equipment**. Provide power-driven concrete saws to saw the joints shown on the plans. Provide standby power-driven concrete saws during concrete sawing operations.
- 3.8. **Grinding Equipment**. Provide self-propelled powered grinding equipment that is specifically designed to smooth and texture concrete pavement using circular diamond blades when required. Provide equipment with automatic grade control capable of grinding at least a 3-ft. width longitudinally in each pass without damaging the concrete.
- 3.9. **Testing Equipment**. Provide testing equipment in accordance with Item 421, unless otherwise shown on the plans or specified. Maintain and calibrate all Contractor-supplied testing equipment in conformance with pertinent test methods. Provide calibration records of strength-testing equipment to the Engineer within 1 week after each calibration.
- 3.10. **Coring Equipment**. Provide coring equipment capable of extracting cores in accordance with <u>Tex-424-A</u> when required.
- 3.11. **Miscellaneous Equipment**. Furnish 10-ft. and 15-ft. steel or magnesium long-handled, standard straightedges. Furnish enough work bridges, long enough to span the pavement, for finishing and inspection operations.

4. CONSTRUCTION

Obtain approval for adjustments to plan grade-line to maintain thickness over minor subgrade or base high spots while maintaining clearances and drainage. Maintain subgrade or base in a smooth, clean, compacted condition in conformance with the required section and established grade until the pavement concrete is placed. Dampen subgrade or base with water before placing pavement concrete.

Adequately light the active work areas for all nighttime operations. Provide and maintain tools and materials to perform testing.

4.1. **Paving and Quality Control (QC) Plan**. Submit a paving and QC plan for approval before beginning pavement construction operations. Include details of all operations in the concrete paving process, including methods to construct transverse joints, methods to consolidate concrete at joints, longitudinal construction joint layout, sequencing, curing, lighting, early opening, leave-outs, sawing, inspection, contractor QC testing, testing for opening to traffic, construction methods, other details, and description of all equipment. List

certified personnel performing contractor QC testing and testing for opening to traffic. Submit revisions to the paving and QC plan for approval.

- 4.2. Placing Reinforcing Steel for Continuously Reinforced Concrete Pavements. Accurately place and secure in position all reinforcing steel as shown on the plans. Provide chairs in sufficient number to adequately support the reinforcing steel at the proper height as show on the plans. Secure reinforcing steel at alternate intersections with tie wires. Reinforcing steel intersections may be secured with locking support chairs instead of tie wires. Anchor pins used to prevent the reinforcing steel from shifting may remain in the final pavement. Stagger the lap locations so that no more than 1/3 of the longitudinal steel is spliced in any given 12-ft. width and 2-ft. length of the pavement. Tie all splices with tie wires.
- 4.3. **Joints**. Install formed joints as shown on the plans. Install transverse bulkhead forms to support extending reinforcing steel, shaped accurately to the cross-section of the pavement when placing of concrete is stopped.
- 4.3.1. **Placing Reinforcement at Joints**. Install reinforcing steel at transverse construction joints as shown on the plans. Use multiple-piece tie bars, drilled and epoxy-grouted tie bars, or mechanically inserted single-piece tie bars at longitudinal construction joints. Discontinue the use of mechanically inserted single-piece tie bars if this method results in steel misalignment or improper location, poor concrete consolidation, or other inadequacies. Protect the reinforcing steel immediately beyond the construction joint from damage, vibration, and impact.

For drilled and epoxy-grouted tie bars, drill holes into the existing concrete at least 10 in. deep unless otherwise directed. Use a drill bit with a diameter that is 1/8 in. greater than that of tie bars. Clean the holes using a wire brush and compressed air to remove all the dust and moisture. Only cartridge or machine applicator epoxies are allowed. Follow the epoxy manufacturer's instructions to apply the epoxy. Insert the tip of the epoxy cartridge or the tip of the machine applicator to the end of the tie bar hole, and inject Type III, Class C, epoxy to fill the hole with the amount of epoxy recommended by the manufacture for the size of bar and depth of hole. Insert tie bars.

- 4.3.2. **Testing of Tie Bars**. Verify that tie bars that are drilled and epoxied or mechanically inserted into concrete at longitudinal construction joints develop a pullout resistance equal to at least 3/4 of the yield strength of the reinforcing steel. Test pullout resistance of mechanically inserted tie bars when the concrete pavement is at least 7 days old. Test pullout resistance of epoxy-grouted bars after the epoxy manufacturer's recommended final cure time. Test 15 bars in accordance with ASTM E488, except that alternate approved equipment may be used. All 15 tested bars must meet the required pullout strength. Perform corrective measures to provide equivalent pullout resistance if any of the test results do not meet the required minimum pullout strength. Repair damage from testing.
- 4.3.3. **Testing of Epoxy-Grouted Longitudinal Bars in Continuously Reinforced Concrete Pavements**. When longitudinal reinforcing steel is drilled and epoxy-grouted in existing pavement, test each bar in accordance with ASTM E488, except that alternate approved equipment may be used. All bars must develop a pullout resistance equal to at least 3/4 of the yield strength of the steel. Test pullout resistance after the epoxy manufacturer's recommended final cure time. Perform corrective measures to provide equivalent pullout resistance if any of the test results do not meet the required minimum pullout strength. Repair damage from testing.
- 4.3.4. **Transverse Construction Joints for Concrete Pavement Contraction Design (CPCD)**. Install and rigidly secure a complete joint assembly and bulkhead in the planned transverse contraction joint location when the placing of concrete is intentionally stopped. Install a transverse construction joint either at a planned transverse contraction joint location or mid-slab between planned transverse contraction joints when the placing of concrete is unintentionally stopped. Install tie bars of the size and spacing used in the longitudinal joints for mid-slab construction joints.

Place dowels at mid-depth of the pavement slab, parallel to the surface. Place dowels for transverse contraction joints parallel to the pavement edge. Tolerances for location and alignment of dowels will be shown on the plans. For dowels used in a contraction joint, coat the entire length of the dowels with a thin

film of grease, wax, silicone, or other approved de-bonding material. For dowels used in an expansion joint, coat half the length with a thin film of grease, wax, silicone, or other approved de-bonding material; provide dowel caps on the coated half of each dowel bar.

- 4.4. **Curb Joints**. Construct curb joints in accordance with Item 529.
- 4.5. **Placing and Removing Forms**. Use clean and oiled forms. Secure forms on a base or firm subgrade that is accurately graded and that provides stable support without deflection and movement by form riding equipment. Pin every form at least at the middle and near each end. Tightly join and key form sections together to prevent relative displacement.

Set side forms far enough in advance of concrete placement to permit inspection. Check conformity of the grade, alignment, and stability of forms immediately before placing concrete, and make all necessary corrections. Use a straightedge or other approved method to test the top of forms to ensure that the ride quality requirements for the completed pavement will be met. Stop paving operations if forms settle or deflect more than 1/8 in. under finishing operations. Reset forms to line and grade, and refinish the concrete surface to correct grade.

Avoid damage to the edge of the pavement when removing side forms and bulkhead forms. Repair damage resulting from form removal with an approved repair material within 24 hr. after form removal unless otherwise approved. Chip excessively honeycombed areas to sound concrete, and repair with an approved repair material within 24 hr. after form removal unless otherwise approved. Clean joint face within 24 hr. after a bulkhead for a transverse construction joint has been removed unless otherwise approved. Promptly apply membrane curing compound to the edge of the concrete pavement when forms are removed before 72 hr. after concrete placement.

Forms that are not the same depth as the pavement but within 2 in. of that depth are permitted if the subbase is trenched or the full width and length of the form base are supported with a firm material to produce the required pavement thickness. Promptly repair the form trench after use. Use flexible or curved wood or metal forms for curves of 100-ft. radius or less.

4.6. **Concrete Delivery**. Clean delivery equipment as necessary to prevent accumulation of old concrete before loading fresh concrete. Use agitated delivery equipment for concrete designed to have a slump of more than 5 in. Segregated concrete is subject to rejection.

Begin the discharge of concrete delivered in agitated delivery equipment in accordance with Item 421. Place non-agitated concrete within 45 min. after batching. Reduce times as directed when hot weather or other conditions cause quick setting of the concrete.

- 4.7. **Concrete Placement**. Do not allow the pavement edge to deviate from the established paving line by more than 1/2 in. at any point. Place the concrete as near as possible to its final location, and minimize segregation and rehandling. Distribute concrete using shovels where hand spreading is necessary. Do not use rakes or vibrators to distribute concrete.
- 4.7.1. **Consolidation**. Consolidate all concrete using approved mechanical vibrators operated on the front of the paving equipment. Use immersion-type vibrators that simultaneously consolidate the full width of the placement when machine finishing. Keep vibrators from dislodging reinforcement. Use hand-operated vibrators to consolidate concrete for concrete pavement (formed) placements, and along forms, at all joints, and in areas not accessible to the machine-mounted vibrators. Do not operate machine-mounted vibrators while the paving equipment is stationary. Vibrator operations are subject to review.
- 4.7.2. **Curbs**. Curbs will be in accordance with Item 529.
- 4.7.3. **Temperature Restrictions**. Place concrete that is between 40°F and 95°F when measured in accordance with <u>Tex-422-A</u> at the time of discharge, except that concrete may be used if it was already in transit when the temperature was found to exceed the allowable maximum. Take immediate corrective action or cease concrete production when the concrete temperature exceeds 95°F.

Do not place concrete when the ambient temperature in the shade is below 40°F and falling, unless approved. Concrete may be placed when the ambient temperature in the shade is above 35°F and rising or above 40°F. Protect the pavement with an approved insulating material capable of protecting the concrete for the specified curing period when temperatures warrant protection against freezing. Submit for approval proposed measures to protect the concrete from anticipated freezing weather for the first 72 hr. after placement. Repair or replace all concrete damaged by freezing.

- 4.8. **Spreading and Finishing**. Finish all concrete pavement using approved self-propelled equipment. Use power-driven spreaders, power-driven vibrators, power-driven strike-off screed, or approved alternate equipment to strike-off the surface of the concrete to the required section and grade without surface voids. Use float equipment for final finishing. Use concrete with a consistency that allows completion of all finishing operations without addition of water to the surface. Use the minimal amount of water fog mist necessary to maintain a moist surface. Reduce fogging if float or straightedge operations result in excess slurry.
- 4.8.1. Finished Surface. Perform sufficient checks using a minimum 10-ft. long straightedge on the plastic concrete to ensure the final surface is within the tolerances specified in Surface Test A in accordance with Item 585, "Ride Quality for Pavement Surfaces." Check with the straightedge parallel to the centerline.
- 4.8.2. **Maintenance of Surface Moisture**. Prevent surface drying of the pavement before application of the curing system by means that may include water fogging, the use of wind screens, or the use of evaporation retardants. Apply evaporation retardant at the manufacturer's recommended rate. Reapply the evaporation retardant as needed to maintain the concrete surface in a moist condition until curing system is applied. Do not use evaporation retardant as a finishing aid. Failure to take acceptable precautions to prevent surface drying of the pavement will be cause for shutdown of pavement operations.
- 4.8.3. **Surface Texturing**. Complete final texturing before the concrete has attained its initial set. Drag the carpet longitudinally along the pavement surface with the carpet contact surface area adjusted to provide a satisfactory coarsely textured surface. Prevent grout from plugging the carpet. Do not perform carpet dragging operations while there is excessive bleed water.

A metal-tine texture finish is required unless otherwise shown on the plans. Provide longitudinal tining unless otherwise shown on the plans. Immediately following the carpet drag, apply a single coat of evaporation retardant, if needed, at the rate recommended by the manufacturer. Provide the metal-tine finish immediately after the concrete surface has set enough for consistent tining. Operate the metal-tine device to obtain grooves approximately 3/16 in. deep, with a minimum depth of 1/8 in., and approximately 1/12 in. wide. Do not overlap a previously tined area. Use manual methods to achieve similar results on ramps, small or irregular areas, and narrow width sections of pavements. Repair damage to the edge of the slab and joints immediately after texturing. Do not tine pavement that will be overlaid or that is scheduled for blanket diamond grinding or shot blasting.

Target a carpet drag texture of 0.04 in., as measured by <u>Tex-436-A</u>, when carpet drag is the only surface texture required on the plans. Ensure adequate and consistent macro-texture is achieved by applying enough weight to the carpet and by keeping grout from plugging the carpet. Correct any location with a texture less than 0.03 in. by diamond grinding or shot blasting. The Engineer will determine the test locations at points located transversely to the direction of traffic in the outside wheel path.

- 4.8.4. Small, Irregular Area, or Narrow Width Placements. Use hand equipment and procedures that produce a consolidated and finished pavement section to the line and grade where machine placements and finishing of concrete pavement are not practical.
- 4.8.5. **Emergency Procedures**. Use hand-operated equipment for applying texture, evaporation retardant, and cure in the event of equipment breakdown.
- 4.9. **Curing**. Keep the concrete pavement surface from drying in accordance with Section 360.4.8.2., "Maintenance of Surface Moisture," until the curing material has been applied. Maintain and promptly repair damage to curing materials on exposed surfaces of concrete pavement continuously for at least 3 curing days. A curing day is defined as a 24-hr. period when either the temperature taken in the shade away from

artificial heat is above 50°F for at least 19 hr. or the surface temperature of the concrete is maintained above 40°F for 24 hr. Curing begins when the concrete curing system has been applied. Stop concrete paving if curing compound is not being applied promptly and maintained adequately. Other methods of curing in accordance with Item 422 may be used when specified or approved.

4.9.1. **Membrane Curing**. Spray the concrete surface uniformly with two coats of membrane curing compound at an individual application rate of no more than 180 sq. ft. per gallon. Apply the curing compound before allowing the concrete surface to dry.

Manage finishing and texturing operations to ensure placement of curing compound on a moist concrete surface, relatively free of bleed water, to prevent any plastic shrinkage from cracking. Time the application of curing compound to prevent plastic shrinkage from cracking.

Maintain curing compounds in a uniformly agitated condition, free of settlement before and during application. Do not thin or dilute the curing compound.

Apply additional compound at the same rate of coverage to correct damage where the coating shows discontinuities or other defects or if rain falls on the newly coated surface before the film has dried enough to resist damage. Ensure that the curing compound coats the sides of the tining grooves.

- 4.9.2. **Asphalt Curing**. Apply a uniform coating of asphalt curing at a rate of 90 sq. ft.–180 sq. ft. per gallon when an asphaltic concrete overlay is required. Apply curing immediately after texturing and once the free moisture (sheen) has disappeared. Obtain approval to add water to the emulsion to improve spray distribution. Maintain the asphalt application rate when using diluted emulsions. Maintain asphalt emulsions in a mixed condition during application.
- 4.9.3. **Curing Class HES Concrete**. Provide membrane curing in accordance with Section 360.4.9.1., "Membrane Curing," or wet mat curing in accordance with Section 422.4.8., "Final Curing," for all Class HES concrete.
- 4.10. **Sawing Joints**. Saw joints to the depth shown on the plans as soon as sawing can be accomplished without damage to the pavement, regardless of time of day or weather conditions. Some minor raveling of the sawcut is acceptable. Use a chalk line, string line, sawing template, or other approved method to provide a true joint alignment. Provide enough saws to match the paving production rate to ensure sawing completion at the earliest possible time to avoid uncontrolled cracking. The Engineer will evaluate the cause of the uncontrolled cracking and direct any necessary repairs. Reduce paving production if necessary to ensure timely sawing of joints. Promptly restore membrane cure damaged within the first 72 hr. of curing.

The Engineer will check the depth of saw cuts in accordance with <u>Tex-423-A</u> within 24 hrs. after saw-cutting or before joints are sealed, whichever is sooner. Frequency of checks will be as follows:

- every 500 ft. or fraction thereof for all longitudinal contraction joints, and
- 10% of transverse contraction joints in CPCD for each daily placement.

Resaw contraction joints that are deficient in depth by more than 1/4 in. from plan depth within 24 hr. of depth checks.

- 4.11. **Cleaning and Sealing Joints**. Clean and seal joints in accordance with Item 438, "Cleaning and Sealing Joints." Repair excessive spalling of the joint saw groove using an approved method before installing the sealant. Seal all joints before opening the pavement to all traffic. Joint sealants are not required on concrete pavement that is to be overlaid with asphaltic materials.
- 4.12. **Protection of Pavement**. Erect and maintain barricades and other standard and approved devices that will exclude all vehicles and equipment from the newly placed pavement for the periods specified. Protect the pavement from damage due to crossings using approved methods before opening to traffic. Where a detour is not readily available or economically feasible, an occasional crossing of the roadway with overweight equipment may be permitted for relocating equipment only, but not for hauling material. When an occasional

crossing of overweight equipment is permitted, temporary matting or other approved methods may be required.

Maintain an adequate supply of sheeting or other material to cover and protect fresh concrete surface from weather damage. Apply as needed to protect the pavement surface from weather.

- 4.13. **Opening to Traffic**. Testing for opening pavement to traffic is the responsibility of the Contractor unless otherwise shown on the plans or as directed. Before opening pavement to traffic:
 - provide test results to the Engineer for review, if necessary,
 - clean pavement,
 - place stable material against pavement edges,
 - seal joints, and
 - perform all other traffic-safety related work.
- 4.13.1. **Opening Pavement to All Traffic**. Pavements can be open to all traffic:
 - when the pavement is 7 days old,
 - when 3-day curing is complete and the concrete has attained a compressive strength of 3,200 psi,
 - after 24 hr. and the concrete has attained a compressive strength of 3,200 psi when Class HES concrete is used, or
 - after the concrete has been cured for at least 8 hr. and attained a minimum compressive strength of 1,800 psi when Class HES concrete is used.
- 4.13.2. **Opening Pavement to Construction Equipment**. Unless otherwise shown on the plans, concrete pavement may be opened to concrete paving equipment and related delivery equipment after the concrete is at least 48 hr. old and has attained a compressive strength of 3,200 psi. Keep delivery equipment at least 2 ft. from the edge of the concrete pavement. Keep tracks of the paving equipment at least 1 ft. from the pavement edge. Protect textured surfaces from the paving equipment. Restore damaged membrane curing as soon as possible. Repair pavement damaged by paving or delivery equipment before opening to all traffic.
- 4.13.3. **Maturity Method**. Maturity method, in accordance with <u>Tex-426-A</u>, may be used to estimate concrete strength for opening pavement to traffic. Install at least two maturity sensors for each day's placement in areas where the maturity method will be used for opening. Maturity sensors, when used, will be installed near the day's final placement for areas being evaluated.

The Engineer will test specimens to verify the strength-maturity relationship in accordance with <u>Tex-426-A</u>. The strength-maturity relationship will be verified at least every 10 days of production after the first day. Establish a new strength-maturity relationship when the strength specimens deviate more than 10% from the maturity-estimated strengths. Suspend use of the maturity method for opening pavements to traffic when the strength-maturity relationship deviates by more than 10% until a new strength-maturity relationship is established.

The Engineer will determine the frequency of verification when the maturity method is used intermittently or for only specific areas.

- 4.13.4. **Emergency Opening to Traffic**. Open the pavement to traffic under emergency conditions, when the pavement is at least 72 hr. old, when directed in writing.
- 4.14. **Sampling and Testing of Concrete**. Unless otherwise specified, all fresh and hardened concrete is subject to testing as follows.
- 4.14.1. **Fresh Concrete**. Provide safe access and assistance to the Engineer during sampling. Fresh concrete will be sampled in accordance with Tex-407-A.
- 4.14.2. **Testing Concrete**. The Engineer will test the fresh and hardened concrete in accordance with the following methods:

- Slump. <u>Tex-415-A</u>, only for formed concrete pavement placements;
- Air Content. Tex-414-A or Tex-416-A, only when air-entrained concrete is shown on the plans;
- Temperature. <u>Tex-422-A;</u>
- Making and Curing Strength Specimens. <u>Tex-447-A</u>;
- Compressive Strength. <u>Tex-418-A</u>; and
- Maturity. <u>Tex-426-A</u>.

Maturity specimens will be made only when maturity method is used or shown on the plans.

Concrete with slump less than minimum required after all addition of water withheld will be rejected, unless otherwise allowed by the Engineer. Concrete with slump exceeding maximum allowed may be used at the Contractor's option. If used, Engineer will make, test, and evaluate strength specimens in accordance with Section 360.4.15., "Acceptance of Concrete Pavement." Acceptance of concrete not meeting air content or temperature requirements will be determined by Engineer. Fresh concrete exhibiting segregation and excessive bleeding will be rejected.

- 4.14.2.1. **Strength Specimen Handling**. After strength test specimens are molded, protect and cure in conformance with pertinent test methods. When necessary, deliver Contractor-molded specimens to curing facilities, remove specimens from their molds, and place specimens in curing tanks within 24–48 hr. after molding, in conformance with pertinent test methods. The Engineer will deliver Department-molded specimens to curing facilities, remove specimens from their molds, and place specimens in curing tanks within 24–48 hr. after molding, in conformance with pertinent test methods. The Engineer will deliver Department-molded specimens to curing facilities, remove specimens from their molds, and place specimens in curing tanks within 24–48 hr. after molding, in conformance with pertinent test methods.
- 4.15. Acceptance of Concrete Pavement. The Engineer will determine pay adjustments for deficient pavement thickness within 14 days after concrete pavement has been cored. The Engineer will determine structural adequacy of low concrete strengths within 7 days after design strength specimens or cores, if taken, are tested.
- 4.15.1. Pavement Thickness. The Engineer will check the thickness in accordance with <u>Tex-423-A</u> unless other methods are shown on the plans. The Engineer will perform one thickness test consisting of one reading at approximately the center of the paving equipment every 500 ft. or fraction thereof. Core where directed, in accordance with <u>Tex-424-A</u>, to verify deficiencies. Do not core until pavement is at least 7 days old or has achieved design strength. Fill core holes using an approved concrete mixture and method.
- 4.15.1.1. **Assessing Payment Adjustments**. Limits for applying a payment adjustment for deficient pavement thickness are 500 ft. units of pavement in each lane. Lane width will be as shown on typical sections and in conformance with pavement design standards.

The limits for retaining deficient pavement without compensation or removing and replacing without additional compensation will be defined by coring or equivalent nondestructive means as determined by the Engineer. The remaining portion of the 500-ft. unit allowed for pay adjustment will be subject to the payment adjustment based on the average core thickness deficiency at each end of the 10-ft. interval investigation as determined by the Engineer.

Shoulders will be measured for thickness unless otherwise shown on the plans. Shoulders 6 ft. wide or wider will be considered as lanes. Shoulders less than 6 ft. wide will be considered part of the adjacent lane. Shoulders less than 6 ft. wide and placed separately from the adjacent lane will be considered as a lane.

Limits for applying payment adjustment for deficient pavement thickness for ramps, widenings, acceleration and deceleration lanes, and other miscellaneous areas are 500-ft. units. Areas less than 500-ft. units will be individually evaluated for payment adjustment based on the plan area.

4.15.1.2. Verification of Thickness Deficiencies. When any fresh depth test measured in accordance with <u>Tex-423-A</u> is deficient by more than 0.50 in. from the plan thickness, take one 4-in. diameter core at that location to verify the measurement. When determining the average thickness deficiency for assessing a pay adjustment other than retaining pavement without compensation or remove and replace as shown in Table 1, take at least two additional cores from the unit, in accordance with Section 360.4.15.1.1., "Assessing Payment Adjustments," equidistantly spaced from the first core in each direction if the first core is deficient by more than 0.50 in. from the plan thickness. Measure the length of cores in accordance with <u>Tex-424-A</u>. Determine the average thickness by averaging the lengths of the cores. Subtract the calculated average thickness from the plan thickness to determine the average thickness deficiency. In calculations of the average thickness, measurements exceeding the plan thickness by more than 0.2 in. will be considered as the plan thickness plus 0.2 in.

When determining the limits for retaining the deficient pavement without compensation or remove and replace without additional compensation, take additional cores at 10-ft. intervals in each direction parallel to the centerline to determine the boundary of the deficient area if the first core length deficiency is more than 1.00 in. for pavements less than 11 in. thick or more than 1.50 in. for pavements 11 in. or thicker. Continue taking cores at 10-ft. intervals until the core length deficiency is less than 1.00 in. for pavements less than 11 in. thick or less than 1.50 in. for pavements less than 1.50 in. for pavements 11 in. thick or less than 1.50 in. for pavements 11 in.

4.15.2. Strength of Concrete Pavement. The Engineer will accept concrete pavement meeting a compressive strength of 3,200 psi at 7 days or meeting a compressive strength of 4,000 psi at 28 days for Class P concrete.

Concrete strength testing may be correlated to an age other than 7 days in accordance with <u>Tex-427-A</u> when approved.

The Engineer will accept concrete pavement using Class HES concrete based on the required strength and time.

Investigate the strength test procedures, the quality of materials, the concrete production operations, and other possible problem areas to determine the cause when a concrete strength test value is more than 10% below the required strength or when three consecutive strength values fall below the required strength. Take necessary action to correct the problem, including redesign of the concrete mix if needed. The Engineer may suspend concrete paving if the Contractor is unable to identify, document, and correct the cause of low-strength test values in a timely manner. The Engineer will evaluate the structural adequacy of the pavements if any strength is more than 15% below the required strength. Remove and replace pavements found to be structurally inadequate at no additional cost when directed.

4.15.3. **Ride Quality**. Measure and correct ride quality in accordance with Item 585, unless otherwise shown on the plans.

5. MEASUREMENT

This Item will be measured as follows.

5.1. **Concrete Pavement**. Concrete pavement will be measured by the square yard of surface area in place. The surface area includes the portion of the pavement slab extending beneath the curb.

6. PAYMENT

These prices are full compensation for materials, equipment, labor, tools, and incidentals.

6.1. **Concrete Pavement**. The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Concrete Pavement" of the type and depth specified as adjusted in accordance with Section 360.6.2., "Deficient Thickness Adjustment."

6.2.

Deficient Thickness Adjustment. Where the average thickness of pavement is deficient in thickness, payment will be made using the adjustment factor in accordance with Table 1 applied to the bid price for the deficient area for each unit in accordance with Section 360.4.15.1.1., "Assessing Payment Adjustments." When pavement thickness investigation (coring) is conducted for three consecutive placements, remove and replace without additional compensation all pavement placed during these days if the average thickness deficiency from all cores taken from these consecutive placements is greater than 0.25 in.

Deficient Thickness Price Adjustment Factor			
Deficiency in Thickness Determined by Cores (in.)	Proportional Part of Contract Price Allowed (Adjustment Factor) for Thickness <11 inches		
Not deficient	1.00		
Over 0.00 through 0.50	1.00		
Over 0.50 through 0.75	0.80		
Over 0.75 through 1.00	0.60		
Over 1.00 through 1.25	Retain pavement without compensation		
	or		
	Remove and Replace		
Over 1.25	Remove and Replace		
Deficiency in Thickness Determined by Cores (in.)	Proportional Part of Contract Price Allowed (Adjustment Factor) for Thickness ≥11 inches		
Not deficient	1.00		
Over 0.00 through 0.50	1.00		
	1.00		
Over 0.50 through 0.75	0.90		
Over 0.50 through 0.75	0.90		
Over 0.50 through 0.75 Over 0.75 through 1.00	0.90 0.80		

Table 1	
Deficient Thickness Price Adjustment Factor	

6.3.

Curb. All curbs will be paid for under Item 529.

Item 361 Full-Depth Repair of Concrete Pavement

1. DESCRIPTION

Repair concrete pavement to full depth in accordance with the details shown on the plans and the requirements of this Item.

2. MATERIALS

Furnish materials in accordance with the following.

- Item 360, "Concrete Pavement"
- Item 421, "Hydraulic Cement Concrete"
- Item 440, "Reinforcement for Concrete"
- <u>DMS-6100</u>, "Epoxies and Adhesives"
- <u>DMS-4655</u>, "Concrete Repair Materials"
- 2.1. **Full-Depth Repair**. Obtain approval for the repair material mix design. The selection of repair material should be based on the time for opening to traffic and temperature range during the repair.
- 2.1.1. **Hydraulic Cement Concrete for Pavement**. Provide Class High Early Strength (HES) concrete designed to attain a minimum average flexural strength of 255 psi or a minimum average compressive strength of 1,800 psi within the designated timeframe if the timeframe designated for opening to traffic is less than 72 hr. after concrete placement. Otherwise, provide Class P concrete in accordance with Item 360.

Provide material in accordance with <u>DMS-4655</u> Type A when Class HES concrete does not meet the strength requirement within the designated timeframe.

2.1.2. **Asphalt Concrete**. Furnish asphalt concrete material for overlay and asphalt shoulder repair as shown on the plans or when directed. The Engineer may waive quality control tests for this material.

3. EQUIPMENT

Provide tools and equipment necessary for proper execution of the work that meet the pertinent requirements of the following.

- Item 360
- Concrete Demolition Equipment. Provide hammers or hydro-demolition equipment for the bulk removal of concrete.
- Concrete Lift-Out Equipment. Provide steel chains, lift pins, and a crane or front-end loader capable of lifting the concrete and loading it onto a flatbed or dump truck.
- Drill. Use a drill with tungsten carbide bits.
- Air Compressor. Provide compressor equipped with filters designed to remove oil from the air and capable of delivering air to remove dust and debris.

4. CONSTRUCTION

Submit for approval all materials and methods of application at least 2 weeks before beginning any repair work. Repair locations will be as indicated on the plans or as directed. Repair areas may be adjusted after

361

removing distressed concrete. Compensation will be made for unexpected volumes of repair areas or changes in scope of work.

4.1. Full-Depth Repair. Repair areas identified by the Engineer. Make repair areas rectangular, at least 6 ft. long, and at least 1/2 a full lane in width, unless otherwise shown on the plans. Accept ownership of all removed material, and dispose of it in accordance with federal, state, and local regulations unless otherwise shown on the plans. Saw-cut and remove existing asphalt concrete overlay at least 2 ft. longer than the repair patch in each longitudinal direction when there is existing asphalt concrete overlay over the repair area.

Saw-cut the full depth through the concrete around the perimeter of the repair area before removal. Schedule work so that concrete placement follows full-depth saw-cutting by no more than 7 days unless otherwise shown on the plans or approved.

Remove the slab by lifting the slab with a minimum disturbance to the base materials and surrounding concrete. Do not spall or fracture concrete adjacent to the repair area. Saw-cut and remove additional concrete as directed, after slab removal, if distresses are found in the surrounding concrete pavement. Repair damages to concrete pavement caused by the Contractor's operation without additional compensation. Perform repairs as directed.

Remove loose or damaged base material completely, leaving no loose base material. Recompact, if necessary, existing base materials to the Engineer's satisfaction.

Use tie bars to restore the continuity of the concrete pavement as shown on the plans. Demonstrate, by simulated job conditions, that the bond strength of the epoxy-grouted tie bars meets a pullout strength of at least 3/4 of the yield strength of the tie bar when tested in accordance with ASTM E488 within the epoxy manufacturer's recommended curing time. Perform corrective measures and retest when necessary to meet testing requirements. Perform tie bar testing before starting repair work. During the preconstruction meeting, discuss the estimate of the number of epoxy cartridges per repair size that will be used to fill the tie-bar holes.

Place tie bars as shown on the plans. Drill holes into the existing concrete at least 10 in. deep unless otherwise directed. Use a drill bit with a diameter that is 1/8 in. greater than that of tie bars. Clean the holes with a wire brush and compressed air to remove all the dust and moisture. Only cartridge or machine applicator epoxies will be allowed. Follow the epoxy manufacturer's instructions to apply the epoxy. Insert the tip of the epoxy cartridge or the tip of the machine applicator into the end of the tie bar hole, and inject Type III, Class C epoxy to fill the entire hole. Insert tie bars.

Place new deformed reinforcing steel bars of the same size and spacing as those shown on the plans for continuously reinforced concrete pavement (CRCP) repairs. Lap all longitudinal reinforcing steel at least 25 in. Provide and place supports to firmly hold the new reinforcing steel in place when needed.

Place dowel bars as shown on the plans for concrete pavement contraction design (CPCD) repairs. Provide and place supports to firmly hold the dowel bars in place.

After removing all loose base material and installing all necessary reinforcing steel, place concrete directly on the remaining existing base.

Mix, place, cure, and test concrete in accordance with Item 360 and Item 421. Broom-finish the concrete surface unless otherwise shown on the plans.

Perform a timely saw-cut over the dowel bars at transverse contraction joints for CPCD in accordance with Section 360.4.10., "Sawing Joints." Clean and seal CPCD transverse contraction joints and any existing longitudinal joints in accordance with Section 360.4.11., "Cleaning and Sealing Joints."

Match the grade and alignment of existing concrete pavement. Replace any asphalt overlay and shoulder material removed with new asphalt concrete material after concrete strength requirements have been met.

Remove repair area debris from the right of way each day. Concrete pavement may be opened to traffic when specified strength is achieved.

The maturity method, <u>Tex-426-A</u>, may be used to estimate concrete strength for opening pavement to traffic, in accordance with Section 360.4.13.3., "Maturity Method."

5. MEASUREMENT

This Item will be measured by the cubic yard of material in place of the completed concrete area repaired. Volume will be computed based on the measured area in place and the average depth measured in place.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as specified under "Measurement" will be paid for at the unit price bid for "Repair of Concrete Pavement (Full-Depth)." This price is full compensation for removal, stockpiling, and disposal of waste material and for equipment, materials, labor, tools, and incidentals. Asphalt concrete, pavement markings, and curbing will be paid for under pertinent Items.