

THE POWER OF YOU - Delivering Right-Of-Way Solutions to Texas

UE Status, Trends and Opportunities

Cesar Quiroga, PhD, P.E., F.ASCE Manager, Utility Engineering Program, Texas A&M Transportation Institute

Day 3 – 1:30pm-2:30pm 12/14/2023

Utility Week 2023

Presenter: Cesar Quiroga, Ph.D.

- Cesar started and currently leads the Utility Engineering Program at the Texas A&M Transportation Institute. He has been working on utility engineering topics since the early 1980s.
- Cesar is a Civil Engineer with master's and Ph.D. degrees from LSU in Baton Rouge. He is a registered P.E. in Texas and Louisiana.
- He has been a member of several organizations, including the Transportation Research Board (where he served as Chair of the Utilities Committee), ASCE, IRWA, and APWA.
- At ASCE, he is a founding member of UESI and TxUESI. At UESI, he has been a member of several committees, including the committees that developed the 38-22 and 75-22 standards.

Topics

- Sample of current initiatives
- Emerging trends, challenges, and opportunities
 - Digital twins and building information modeling (BIM)
 - Utility investigations
 - Utility conflict management (UCM)
 - Construction and utility inspections
 - Artificial intelligence

Utility Engineering and Engineering Surveying

- Utility Engineering is a branch of engineering that focuses on the planning, design, construction, operation, maintenance, and asset management of all utility systems, <u>as well as the</u> <u>interaction (and interdependence) between utility</u> <u>infrastructure and other infrastructure</u>
- Engineering surveying includes surveying activities required to support the conception, planning, design, construction, maintenance, and operation of engineered projects

•Unplanned environmental corrective actions

Utility Engineering Framework

Utility Investigation Methods

- Quality levels:
 QLD, QLC, QLB, QLA
- Standard Guideline for Investigating and Documenting Existing Utilities
 - ASCE/UESI/CI 38-22

New ASCE Standard Guideline

- Standard Guideline for Recording and Exchanging Utility Infrastructure Data (ASCE/UESI/CI 75-22)
 - Utility infrastructure
 data content and accuracy
 - Data stewardship

New ASCE Standard Guideline

- Standard Guideline for Recording and Exchanging Utility Infrastructure Data (ASCE/UESI/CI 75-22)
 - Utility infrastructure data content and accuracy

ransportation

nstitute

New ASCE Standard Guideline

• Standard Guideline for Recording and Exchanging Utility Infrastructure Data (ASCE/UESI/CI 75-22)

	Attribute	Value	
— U	ID	23415	
Ь	Owner	Gas and Electric, Inc.	
G	Utility Type	Petroleum and Gaseous Materials	
— D	Utility Subtype	Natural Gas	
	Conveyance Category	Transmission	
	Underground Status	Underground	-
12"W1 (Operational Status	In-Service	
/	Horizontal Spatial Reference	NAD 83, State Plane Central Zone 4203 Epoch 2010	
- W1 (D)	Vertical Spatial Reference	NAVD88	H-3
	Horizontal Accuracy	0.18	
	Vertical Accuracy	0.06	
	Accuracy Units	Feet	
🔏 Texas A&	Quality Level	QLB	
Transpor	Material	Steel	13

Utility Investigation Methods

Pilot UCM Implementation at TxDOT

UCM Lessons Learned

- Benefits of an earlier identification of utility conflicts:
 - More effective coordination with utility owners
 - Fewer unnecessary utility relocations
 - Fewer disruptions during construction
 - Fewer utility-related change orders
- Tangible time delivery and economic savings:
 - Phase 2: 38 months and \$11M (+\$13M elsewhere)
 - Phase 3: 2 years and \$24M (partial results)

Best Practices for Utility Conflict Management

- Use utility layout to:
 - Identify and show utility conflict locations
 - Assign unique utility conflict IDs
- Update utility conflict list after updating utility layout
- Track utility conflicts at the utility facility level
- Start early (best during preliminary design)
- Involve stakeholders in review of utility conflicts and solutions
 - Regardless of reimbursement eligibility

2001 Study–Top Causes of Project Delays

■ DOT ■ DESIGNER ■ CONTRACTOR

UR Change Orders by Disaggregated Reason

Disaggregated Change Order Reason	Average			
Errors and omissions in PS&E	33%			
Inaccurate or incomplete data about existing or relocated utility facilities				
Changes initiated by project owner, contractor, or utility owner	12%			
Delays getting utility owners to schedule utility relocations	11%			
Differing site conditions	4%			
Difficult or inadequate constructability of highway work or utility relocation	4%			
Inaccurate or deficient utility relocation work	2%			
Delays acquiring or clearing right-of-way or utility relocation sites	2%			
Other	9%			
Total	100%			

Topics

- Sample of current initiatives
- Emerging trends, challenges, and opportunities
 - Digital twins and building information modeling (BIM)
 - Utility investigations
 - Utility conflict management (UCM)
 - Construction and utility inspections
 - Artificial intelligence

Digital Twins and BIM

- Simple, regular objects (straightforward parametric models):
 - Pipelines: Centerline vertices (X-Y-Z), diameter, thickness
 - Rectangular boxes: Corners (X-Y-Z), thickness
 - Compact data requirements
- Complex, irregular objects (non-parametric models):
 - 3D meshes: Vertices (X-Y-Z), edges, and faces
 - More demanding data requirements
 - Best for specific objects within the utility network
- Use ASCE/UESI/CI 75-22 to anchor and add attributes to objects

Digital Twins and BIM

Digital Twins and BIM

Topics

- Sample of current initiatives
- Emerging trends, challenges, and opportunities
 - Digital twins and building information modeling (BIM)
 - Utility investigations
 - Utility conflict management (UCM)
 - Construction and utility inspections
 - Artificial intelligence

GPR and TDEMI Arrays

3D GPR

=

GPR and TDEMI Arrays

TDEMI

Utility

UAS-Based Metal Detector

UAS-Based Metal Detection

UAS-Based Metal Detection

Utility Data Aggregators

- Available historical imagery and data mining of online records
- Utility map without going to the field
- Many data sources with differing levels of completeness/quality

 No metadata associated with data sources
- Use during preliminary design phase before or as part of QLD
- Does not replace QLC, QLB, or QLA data

Additional Pipeline Crossing

Shifted Water and Sewer Locations

42

Emerging Trends for Utility Investigations

- MicroStation/OpenRoads Designer:
 - 3D deliverables that are digital twins of utility features
 - Optimized use of parametric and nonparametric objects
 - Use item types and properties to document utility features
 - Use annotations/call outs based on property values
 - Do not type in annotations/callouts to document utility features

Emerging Trends for Utility Investigations

Topics

- Sample of current initiatives
- Emerging trends, challenges, and opportunities
 - Digital twins and building information modeling (BIM)
 - Utility investigations
 - Utility conflict management (UCM)
 - Construction and utility inspections
 - Artificial intelligence

Emerging Trends for Utility Conflict Management

- Use utility layout in MicroStation/OpenRoads Designer to:
 - Identify utility conflicts
 - Show utility conflict locations
 - Assign unique utility conflict IDs
- Integrate utility layout with utility conflict list/matrix to:
 - Prepare/maintain list of utility conflicts
 - Document utility conflict resolution alternatives

Emerging Trends for Utility Conflict Management

A Text Editor					
200-22 STANDARD	~		👌 🖑 🔊 • 📩		
G Fields Editor	•		×		
A Relements (1)		-	String For		
▲ ∧ Complex Chain			Case (Default)		
D Items		-			
Geometry	~	^			
Extended	*				
Utility Conflict	^				
Conflict ID WW-1 Facility ID 2060943 Utility Owr Bowie Utilities					
Raw Data	^				
Element IE 76614 Range Lov 3301082.3170ft,72 Range Hic 3301339.3060ft,72 	368 369	~			
roperty: Conflict ID (Utility Conf	lict)		Preview: WW-1		
	C	K	Cancel		

Emerging Trends for Utility Conflict Management

Transportation Institute

Utility Engineering Status, Trends, and Opportunities

Topics

- Sample of current initiatives
- Emerging trends, challenges, and opportunities
 - Digital twins and building information modeling (BIM)
 - Utility investigations
 - Utility conflict management (UCM)
 - Construction and utility inspections
 - Artificial intelligence

Emerging Trends for Construction and Utility Inspections

 Focus on low-cost, high-accuracy technologies

Devices				
Samsung Galaxy S22				
Samsung Tab Active3		Le		
Apple iPhone 14 Pro Max		A		
Apple iPad Pro 11		Ρ		
Bad Elf Flex		Ρ		
Leica Zeno FLX100 Plus		Ρ		
Trimble DA2		Ρ		
viDoc RTK Rover		В		
Skydio X2E (Color): • Quadcopter • NDAA compliant				

REDUCT ABM-30 and ABM-40/DR-2 Probes

Software

Trimble Penmap

eica Zeno Mobile

ArcGIS Field Maps

ProStar PointMan

PIX4D PIX4Dcatch

PIX4D PIX4Dmapper

PIX4D PIX4Dmatic

Bentley iTwin Capture Modeler

Benchmark Tests—Lessons Learned

- Low-cost GNSS antennas Autonomous mode:
 - 1-2 m horizontal, 0.2-9 m vertical
- Low-cost GNSS antennas RTK:
 - 1-4 cm horizontal, 1-10 cm vertical
- TxDOT RTN better positional accuracy than commercial RTK
- Unlocking fee for low-cost GNSS antenna to achieve RTK accuracy
- Smartphones or tablets equipped with data collection apps

Emerging Trends for Construction and Utility Inspections

- Generalized use cases/requirements:
 - Project survey control point verification
 - Locations within the required tolerance
 - Locations outside of the required tolerance
 - 3D Objects-With ground control points
 - 3D Objects–With RTK
 - 3D Objects-Without ground control

Emerging Trends for Construction and Utility Inspections

PIX4Dmapper - Educational - Hydrant_With_ViDoc

Project Process View rayCloud Help

Project

▼ Create

Layers

Rays

✓ ☑ Objects

> [

>

 \bigcirc

Home

Map View

12,

rayCloud

Volumes

P

Mosaic

Editor

+= ×÷

Index

Calculator

C Processing L Log Output ¢ Processing Options

NAD83(2011) / Texas South Central (EGM 96 Geoid) - (647557.91, 4186992.02, 249.72) [m]

PIX4Dmapper - Educational - Hydrant_With_ViDoc

Topics

- Sample of current initiatives
- Emerging trends, challenges, and opportunities
 - Digital twins and building information modeling (BIM)
 - Utility investigations
 - Utility conflict management (UCM)
 - Construction and utility inspections
 - Artificial intelligence

Artificial Intelligence (AI)

- "Ability of a digital computer or computer-controlled robot to perform tasks commonly associated with intelligent beings ... Processes characteristic of humans, such as the ability to reason, discover meaning, generalize, or learn from past experience."
- "Theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages."
- "Field in computer science that refers to computers or machines being able to simulate human intelligence to perform tasks or solve problems."

Artificial Intelligence (AI)

- Best used or huge potential for:
 - Detecting trends from large amounts of data
 - Predicting responses based on data/trend correlations
 - Automating dangerous or repetitive tasks
- Not recommended for:
 - Situations that require creativity or unique engineering solutions
 - Situations for which emotional intelligence is critical
 - Documenting business processes only using AI algorithms

Utility-Related (UR) Change Orders

- Use of AI algorithms to classify change orders between utility related (UR) and non-utility related (NUR)
- 102,300 records with change order codes and descriptions
 - 4,000 UR records
 - Significant number of false positives and false negatives
 - Nine (9) AI algorithms trained, tested, and validated
 - Result: 3,000 additional UR records
 - Most promising AI algorithms: 88–92% UR accuracy

AI-Based Processing of Geophysical Data

- Goal: Generate X-Y-Z feature data
- Raw data: X-Y-Z plus measured intensity of magnetic response
- 150,000 scenario/location combinations:
 - Pipeline, block, combinations (features, horizontal, inclined)
 Multiple X-Y-Z locations per scenario within a defined space
- Unique 3D response from each scenario/location combo
- Al algorithm learns from responses
- After AI training/testing, use real-world magnetic data
- Next: Use TDEMI data

Thank You!!!

For additional information:

Cesar Quiroga, PhD, P.E., F.ASCE

Manager, Utility Engineering Program Texas A&M Transportation Institute Email: <u>c-quiroga@tti.tamu.edu</u> Phone: (210) 321-1229

Questions

Utility Week 2023