

H&H Program Update

April 15, 2025

#EndTheStreakTX

End the streak of daily deaths on Texas roadways.

TxDOT.gov #EndTheStreakTX Toolkit

Turn Around, Don't Drown

On average, over 50% of flood fatalities occur in vehicles.

Purpose of the DES H&H Section

The H&H Section leads the statewide practice of hydrology & hydraulics through:

- *development of policy and guidance*
- providing training and specialized project support
- maintaining expertise at the leading edge of the state of practice and the state of knowledge.
- cultivating a community of technical collaborators

The Relationship of Divisions and Districts

Leading TxDOT in providing and growing design and project development expertise, through collaborative efforts and quality customer service, to effectively and efficiently deliver a safer transportation system for Texas.

Ensure the Districts know what they need to know and have what they need to have maximize successful program delivery

The DES H&H Team

Ab Maamar-Tayeb

Davis Magenheimer

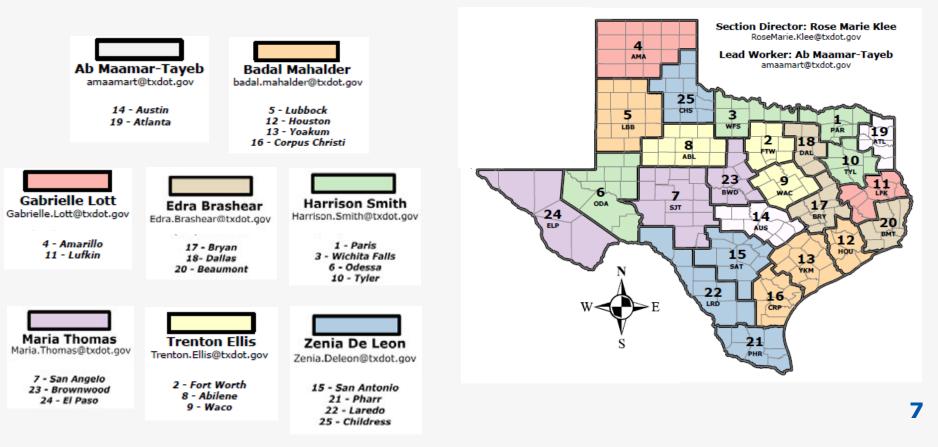
Edra Brashear

Badal Mahalder

Harrison Smith

Maria Thomas

Trenton Ellis

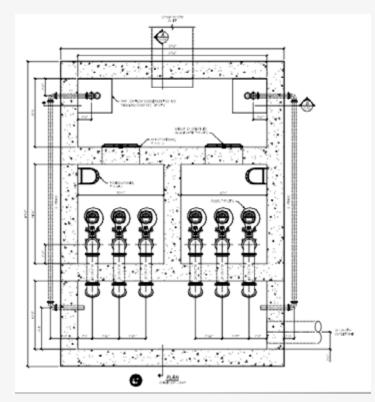

Zenia De Leon

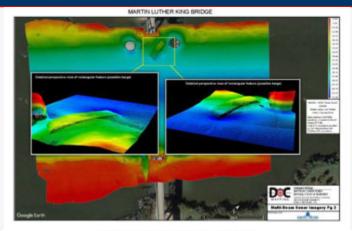
District H&H Points of Contacts

Examples of District Collaborations

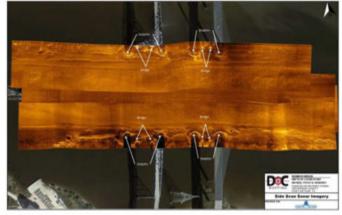
West Texas Hydrology – Lubbock District

9


Flooding Complaints



Connecting you with Texas

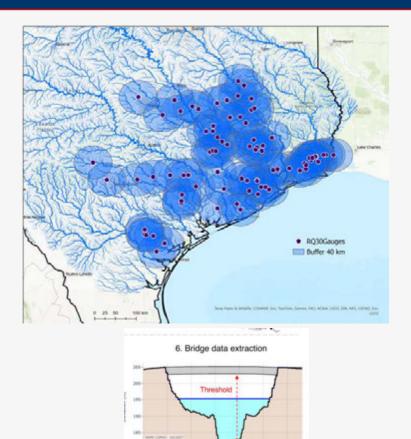


Special Technical Reviews

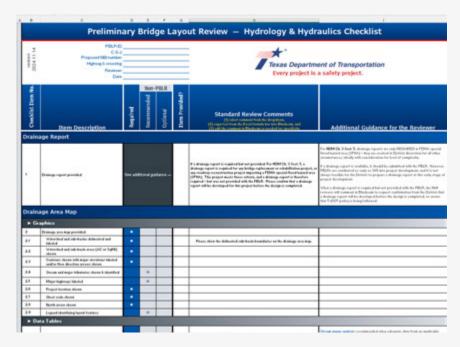
VETERANS MEMORIAL BRIDGE AND RAINBOW BRIDGE

Fluvial Geomorphology

Unique Collaborations

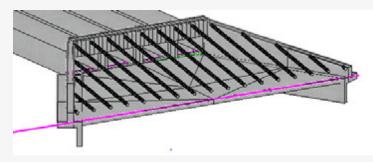


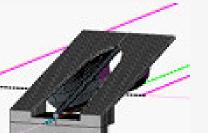
Ongoing and Upcoming Projects

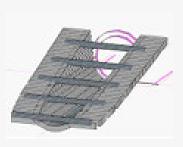

- Research Projects
 - Streamflow III (#Basins and #Gages)
 - Gaps in Scour Knowledge (Cohesive Soils under pressure)
 - Synthesis on Training
 - Nature-Based Solutions

Ongoing and Upcoming Projects

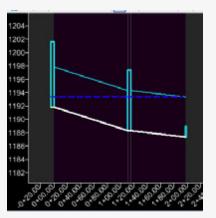
- StreamStats
- PBLR Checklist and H&H Go-by Sheets
- Hydraulics Design Manual Procurement
 Wave 2 2026

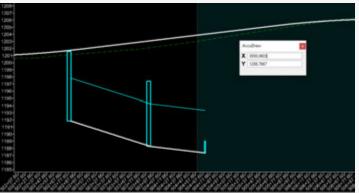





ORD DU Update

- Recent release of update to ORD workspace brings TxDOT closer to Digital Delivery
- Civil Cells for Headwalls
 - Workflow Manual
- Pre-cast Base minimum height adjusted for cell
- Plastic Pipe
- Review of Bentley OpenFlow capabilities
 - Civilstorm (Unsteady flow)
 - PondPak (detention Ponds)
 - SewerGems (Pump Stations)





ORD DU 10.12 Known Issues

- HGL does not project to Alignment
- Drainage Areas not updating with changes or when adding inlets
- DU Culvert Calculator gives different results than HY-8. Do not use DU for culvert analysis.
- PAZD head depth changes when using trapezoidal section when keeping flowrate constant.

Hydrology & Hydraulic Training Program Updates

Training Program Update Mission

To deliver cutting-edge hydrology and hydraulics training that increases the expertise of TxDOT staff, equipping them with the skills and knowledge needed to excel in their roles.

Our Vision

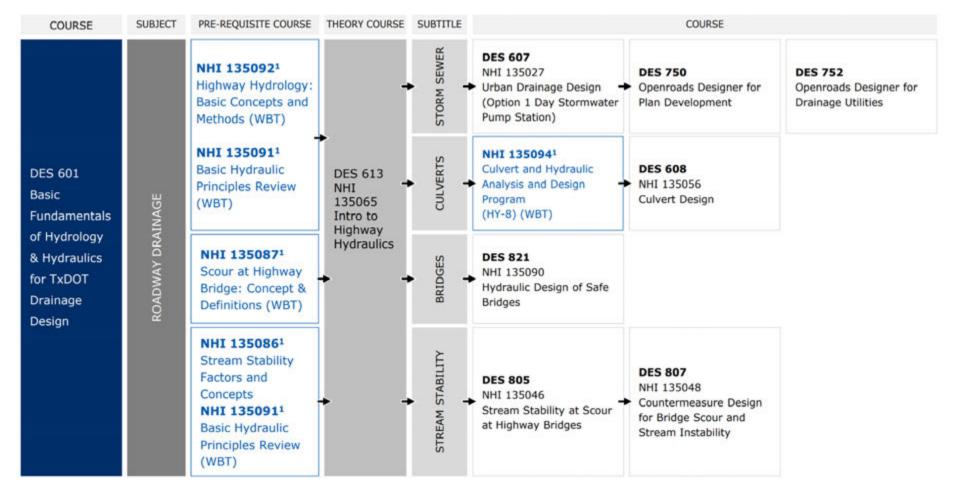
To be a best-in-class hydrology and hydraulics training program, enhancing the expertise of TxDOT staff, driving innovation and critical thinking, and delivering comprehensive hydrology and hydraulics solutions that increase community resilience and encourage agile recovery in the face of environmental challenges.

Highlights

- Course Updates
- Resource Updates

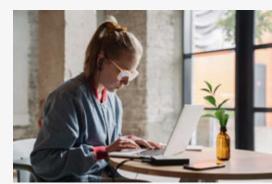
Course Updates: H & H Training Course Flow Paths

- Overall Flow Path
- Drainage Review and Senior Level Flow Path
- H & H Software Modeling Flow Path
- Roadway Drainage Flow Path


TxDOT CrossRoad ACCESS ONLY

Flow Charts

Hydrology & Hydraulic Training Course Flow Path for Roadway Drainage



Course Updates

NHI Updates

New Virtual Course Options

- DES 607 Urban Drainage Design FHWA-NHI-135027
 - Course updated to 4th edition HEC-22 Manuel (2024)
- DES 608 Culvert Design FHWA-NHI-135056
- DES 800 Two-Dimensional Hydraulic Modeling of Rivers at Highway Encroachments FHWA-NHI-135095
- DES 805 Stream Stability and Scour at Highway Bridges FHWA-NHI-135046
- DES 807 Countermeasure Design for Bridge Scour and Stream Instability FHWA-NHI-135048

Course Updates

On Demand Training

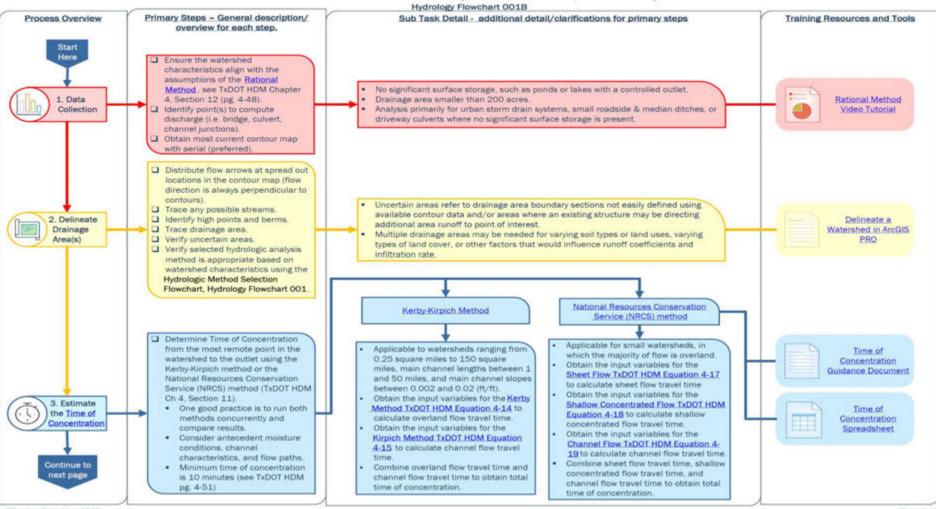
- DES 601 Basic Hydrology & Hydraulics
- DES 611 Intro to HEC-HMS
- DES 612 Intro to HEC-RAS
- DES 617 Fundamental Concepts of GIS & ArcGIS for H & H
- DES 618 Advanced Concepts of GIS & ArcGIS for H & H
- DES 621 Advanced HEC-HMS
- DES 622 1D Unsteady using HEC-RAS
- DES 624 1D_2D HEC-RAS
- DES 798 TxDOT Scour Analysis

TxDOT CrossRoad ACCESS ONLY

On Demand Training

Course Updates NEW Drainage Review Training

- Drainage Review Training
 - Module 1: Cross Drainage Review Training
 - Module 2: HEC-RAS Review Training
 - Module 3: HEC-HMS Review Training
 - Module 4: EPA SWMM Review Training
- Virtual & live courses
- 1 2 day training session
- Start Date: FY 2026



Resource Updates Workflow Diagram

Texas Department of Transportation

Rational Method Workflow (TxDOT HDM Ch4, Section 12)

Questions

Ab Maamar-Tayeb amaamart@txdot.gov

Edra Brashear edra.brashear@txdot.gov

TxDOT Resources for Scour Analyses and PBLRs

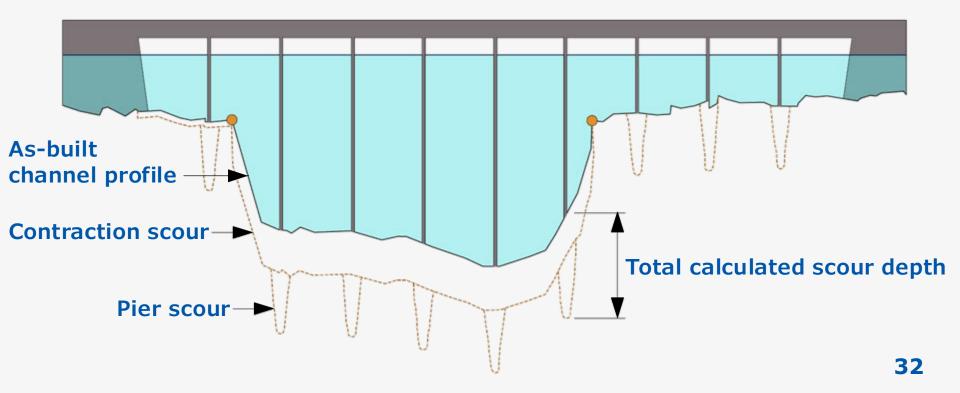
Trenton Ellis, P.E. | TxDOT Design Division | Hydrology & Hydraulics Section

H&H Community of Practice TxDOT Roadway Design and Bridge Conference

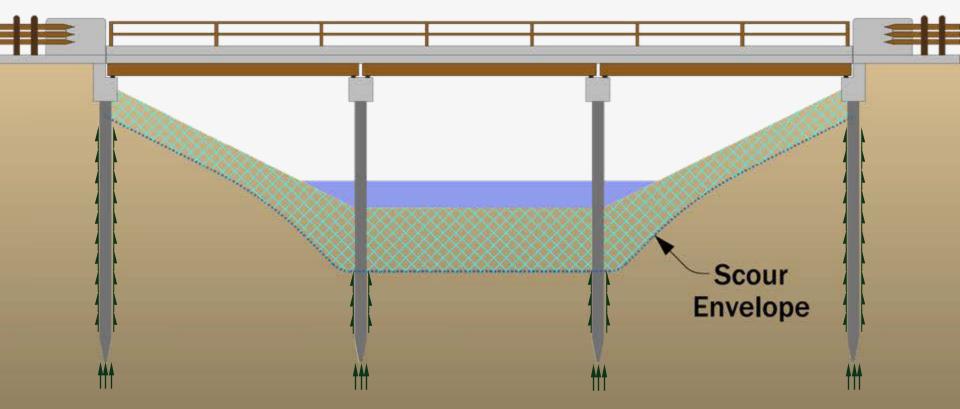
Table of Contents

- 3 | Bridge Scour
 - 7 | Scour Analysis Guide
 - 16 | Scour Analysis Tools
 - 20 | DES 798
- 21 | Preliminary Bridge Layout Reviews
 - 23 | New H&H Checklist

texashighways.com

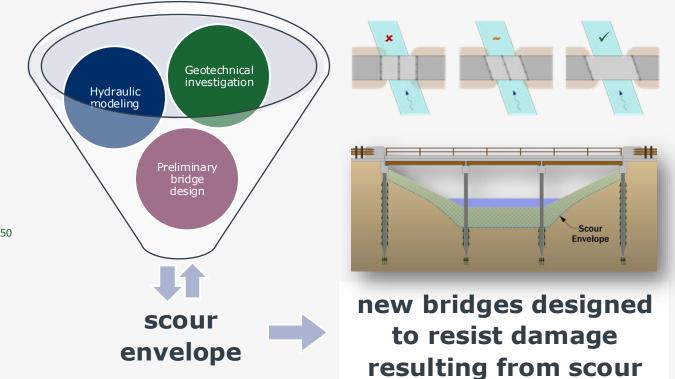

What is bridge scour?

- The most common cause of bridge failures
- Erosion of streambed or bank material due to flowing water; often considered as being localized:
 - Contraction scour
 - removal of materials across all or most of the channel width caused by a reduction in flow area
 - Pier scour
 - removal of material localized around piers caused by obstruction to flow



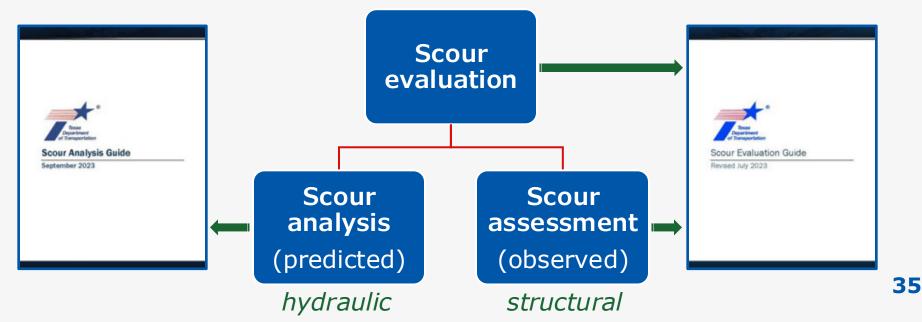
What is a scour analysis? A data-driven prediction

Why is bridge scour the leading cause of bridge failures?



What is a scour analysis? A multidisciplinary collaboration

• Hydraulic data


- Flow (Q)
- Velocity (V)
- Hydraulic depth (y)
- Geotechnical
 - Stratigraphy
 - USCS classification & D₅₀
- Structural details
 - Span layout
 - Substructure geometry
 - Angle of attack

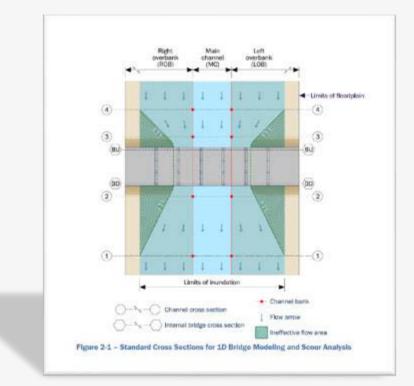
The vocabulary of bridge scour resources at TxDOT

- A scour evaluation considers both predicted and observed scour conditions
 - The least stable of the two conditions governs the overall condition rating

TxDOT Scour Analysis Guide

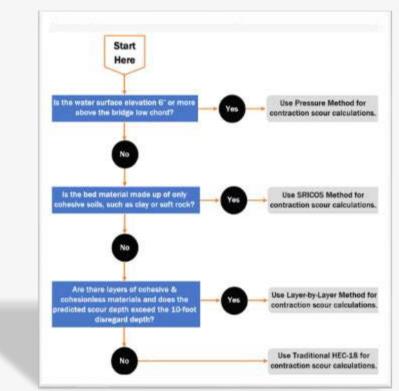
• Hydrologic design criteria for scour analyses

Hydraulic Design Flood ¹	Scour Design Flood	Scour Design Check Flood
< 10-year	2, 5, 10, and 25-year	50-year
10-year	25-year	50-year
25-year	50-year	100-year
50-year	100-year	200-year
100-year	200-year	500-year

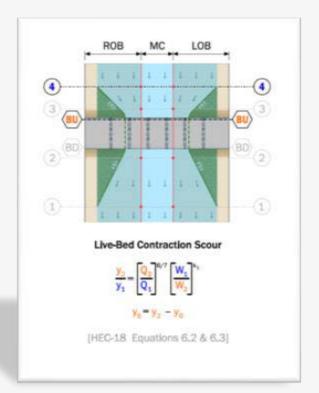

Table 2-1 - Scour Design and Scour Design Check Flood Return Periods

Refer to most recent version of TxDOT Hydraulic Design Manual.

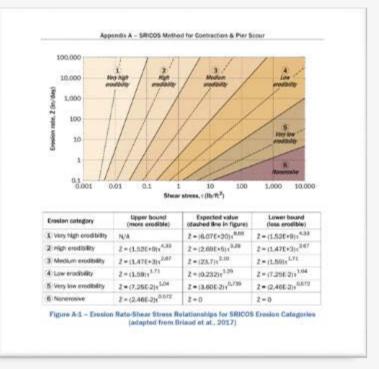
https://ftp.txdot.gov/pub/txdot-info/des/guides/scour-guide.pdf



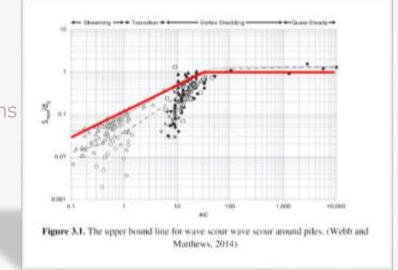
- Hydrologic design criteria for scour analyses
- Hydraulic modeling guidance



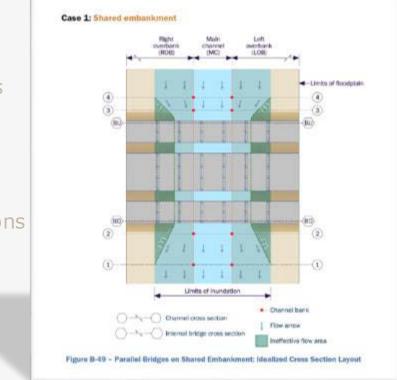
- Hydrologic design criteria for scour analyses
- Hydraulic modeling guidance
- Scour analysis method selection



- Hydrologic design criteria for scour analyses
- Hydraulic modeling guidance
- Scour analysis method selection
- Detailed guidance for scour analysis equations

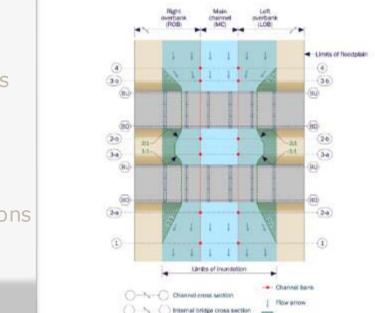


- Hydrologic design criteria for scour analyses
- Hydraulic modeling guidance
- Scour analysis method selection
- Detailed guidance for scour analysis equations
- Special topics
 - SRICOS


- Hydrologic design criteria for scour analyses
- Hydraulic modeling guidance
- Scour analysis method selection
- Detailed guidance for scour analysis equations
- Special topics
 - SRICOS
 - Lacustrine scour

https://ftp.txdot.gov/pub/txdot-info/des/guides/scour-guide.pdf

- Hydrologic design criteria for scour analyses
- Hydraulic modeling guidance
- Scour analysis method selection
- Detailed guidance for scour analysis equations
- Special topics
 - SRICOS
 - Lacustrine scour
 - Parallel bridges


Connecting you with Texas

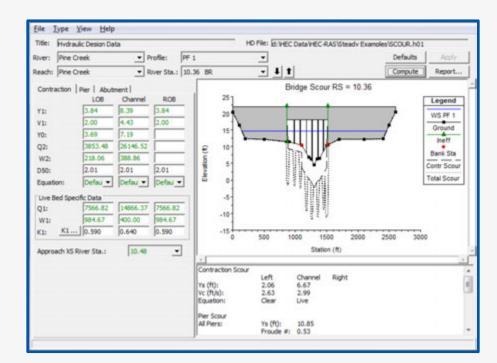
neffective flow area

TxDOT Scour Analysis Guide

- Hydrologic design criteria for scour analyses
- Hydraulic modeling guidance
- Scour analysis method selection
- Detailed guidance for scour analysis equations
- Special topics
 - SRICOS
 - Lacustrine scour
 - Parallel bridges

Case 2: Separate embankments

https://ftp.txdot.gov/pub/txdot-info/des/guides/scour-guide.pdf


Figure B-54 - Parallel Bridges on Separate Embankments: Idealized Cross Section

Lavout

Scour Analysis Software

- HEC-RAS scour calculations (not recommended)
 - Automated routine doesn't always choose the right cross section for input parameters
 - Calculations not updated to latest HEC-18 procedures

https://www.hec.usace.army.mil/software/hec-ras/

Scour Analysis Software

- HEC-RAS scour calculations (not recommended)
 - Automated routine doesn't always work
 - Inconsistencies with HEC-18 5th Ed.
- FHWA Hydraulic Toolbox (acceptable)
 - Lacks detailed guidance for users

Parameter	Value	L L	U	Notes
Check boxes for scour components to be computed				
Enable Scour Plot Options				
Multiple Scenarios				
Scenario	Scour Scenario	•		
Scenario Name	Scour Scenario			
Create New Scenario	Create			The new Scenario will be a copy of the currently selected Scenario
Delete Current Scenario	Delete			
Long Term Degradation				
Contraction Scour				
Local Scour at Piers				
Local Scour at Abutments				
Left Abutment				
Right Abutment				

https://www.fhwa.dot.gov/engineering/hydraulics/software/toolbox404.cfm

Scour Analysis Software

- HEC-RAS scour calculations (not recommended)
 - Automated routine doesn't always work
 - Inconsistencies with HEC-18 5th Ed.
- FHWA Hydraulic Toolbox (acceptable)
 - Lacks detailed guidance for users
- TxDOT Scour Analysis Spreadsheet (recommended)
 - Consistent with HEC-18 and TxDOT guidance
 - Available to everyone on TxDOT.gov

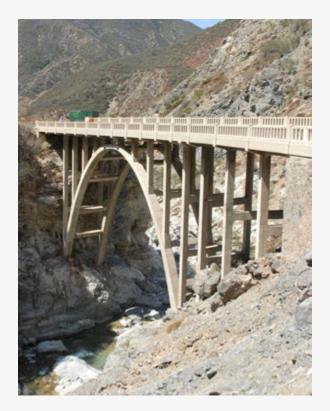
25-year			50-y	ear	
If analyzing incide		a lower from	ment claim	a check this	how and size the
two dropdown box					DOX BEID USE UNE
responding Hydraulic Mor	al Cross Sectio	-			
Identify the hydraulic			encoded to 15	a standard	
bridge-modeling cross			espond to to	W MARIOR C	
and a state of the		construction at the			
	Corresponder	a HEC.BAS	1		
Cross Section (D	Cross Sectio				Model Name
Cross Section 4					
Cross Section 3					
Cross Section BU			ſ	-	Plan Used
Cross Section BD					
Cross Section 2					
Cross Section 1					
Creating and a					
ical Velocity					
ical Velocity					
ical Velocity $v_{\rm C} = \kappa_{\rm a} v^{1/4} \mathcal{D}_{\rm M}^{1/4} \label{eq:v_C}$					
$V_{\rm C} = K_{\rm s} y^{1/4} D_{\rm HI}^{1/4}$	and a set of the set o	relation of sizes	0	or sell be brough	included at the
$v_{\rm C} = \kappa_{\rm e} y^{3/8} D_{\rm HI}^{3/8}$ $V_{\rm C} = {\rm critical velocity abs}$			D and small	ler will be tra	(#\#) behopen
$\begin{split} v_{c} &= \kappa_{a} v^{3/4} D_{ba}^{3/2} \\ V_{c} &= \text{critical velocity alo} \\ v_{i} &= \text{mean velocity in C} \end{split}$	ross Section 4 (PL/1	4			
$\begin{split} & \mathcal{V}_{C} = \mathcal{K}_{m} y^{3/N} D_{M}^{3/T} \\ & \mathcal{V}_{C} = \text{critical velocity abs} \\ & \mathcal{V}_{L} = \text{mean velocity in C} \\ & y_{L} = \text{average depth of} \end{split}$	ross Section 4 (IT,/ fow in Cross Sect	ti ian 4. Refer to F	igure 1 for o	ross section	location. (ft)
$\begin{split} V_{C} &= K_{a} y^{1/8} D_{bd}^{1/8} \\ V_{C} &= \text{critical velocity alx} \\ V_{1} &= \text{mean velocity in C} \\ y_{1} &= \text{average depth of } \\ D_{60} &= \text{median grain size} \end{split}$	ness Section 4 (R/) flow in Cress Section of bed material	ti ian 4. Refer to F	igure 1 for o	ross section	location. (ft)
$\begin{split} & \mathcal{V}_{C} = \mathcal{K}_{m} y^{3/N} D_{M}^{3/T} \\ & \mathcal{V}_{C} = \text{critical velocity abs} \\ & \mathcal{V}_{L} = \text{mean velocity in C} \\ & y_{L} = \text{average depth of} \end{split}$	ness Section 4 (R/) flow in Cress Section of bed material	ti ian 4. Refer to F	igure 1 for o	ross section	location. (ft)
$\begin{split} F_{0}^{c} = K_{u} v^{3/8} \partial_{10}^{1/8} \\ V_{2}^{c} = \text{cntcal velocity ato} \\ V_{1}^{c} = \text{mean velocity in C} \\ y_{1}^{c} = \text{average depth of } \\ D_{00}^{c} = \text{median grain sce} \\ K_{e}^{c} = 11.17 \text{ English unit} \end{split}$	ress Section 4 (R): flow in Cross Section of bed material ts	N an 4. Refer to F (#) ≥ 0.00066	Figure 1 for o	ross section Figure 2 for	location. (ft) selection guidance.
$\begin{split} F_{C}^{c} = \mathcal{K}_{a} v^{2, W} \Delta_{b0}^{UV} \\ V_{L}^{c} &= \text{cntical velocity alc} \\ V_{L}^{c} &= \text{mean velocity in C} \\ y_{L}^{c} &= \text{average depth of } \\ D_{00}^{c} &= \text{median grain size} \\ \mathcal{K}_{a}^{c} &= 11.17 \text{ English uni} \\ \hline \end{split}$	ness Section 4 (R/) flow in Cress Section of bed material	N Inn 4. Refer to F (#5 ≥ 0.00006) K ₀	Figure 1 for o 5 ft. Refer to Vc	ross section	location. (ft)
$\begin{split} F_{0} &= K_{s} V^{N} \Phi_{ss}^{1/4} \\ V_{0} &= \text{critical webcily and} \\ V_{1} &= \text{mean velocity in C} \\ y_{1} &= \text{evenings depth of } \\ D_{00} &= \text{median grain scat} \\ K_{0} &= 11.17 \text{ English unit} \\ \hline \\ \hline \\ \text{Conveyance zone} \\ \text{Left Overback} \end{split}$	ress Section 4 (R): flow in Cross Section of bed material ts	N en 4. Refer to F (#3 ≥ 0.00066 K ₀ 11.17	igure 1 for o 5 ft. Refer to V ₂ 0.0	ross section Figure 2 for	location. (ft) selection guidance.
$\begin{split} F_{C} &= K_{ab} \lambda^{bb} \Omega_{ab}^{bb} \\ V_{D} &= \text{critical velocity alto} \\ V_{1} &= \text{mean velocity in C} \\ y_{1} &= \text{average depth of} \\ D_{bb} &= \text{median gain size} \\ K_{a} &= 11.17 \text{ English un} \\ \hline \\ \text{Conveyance zone} \\ \text{Let Overhank} \\ \text{Main Channel} \end{split}$	ress Section 4 (R): flow in Cross Section of bed material ts	N an 4. Refer to F (#0 ≥ 0.00006) K ₀ 11.17 11.17	Figure 1 for 0 5 ft. Refer to V ₂ 0.0 0.0	ross section Figure 2 for	location. (ft) selection guidance.
$\begin{split} F_{C} &= K_{*} S^{3/4} \Omega_{te}^{1/4} \\ V_{C} &= cntical velocity all \\ V_{+} &= mean velocity in C \\ y_{\pm} &= veerage depth of 1 \\ \Omega_{HD} &= median grain size \\ K_{\pm} &= 11.17 English unit \\ \hline \hline \hline \hline \\ Conveyance zone \\ Left Overbarek \\ Mais Channel \\ Bight Overbark \\ \end{split}$	ress Section 4 (R)? flow in Cross Section of bod material ts Y ₁ D _{NE}	N an 4. Refer to F (#) ≥ 0.00066 11.17 11.17 11.17	igure 1 for o 5 ft. Refer to V ₂ 0.0	ross section Figure 2 for	location. (ft) selection guidance.
$\begin{split} F_{C} &= K_{ab} \lambda^{bb} \Omega_{ab}^{bb} \\ V_{D} &= \text{critical velocity alto} \\ V_{1} &= \text{mean velocity in C} \\ y_{1} &= \text{average depth of} \\ D_{bb} &= \text{median gain size} \\ K_{a} &= 11.17 \text{ English un} \\ \hline \\ \text{Conveyance zone} \\ \text{Let Overhank} \\ \text{Main Channel} \end{split}$	ress Section 4 (R)? flow in Cross Section of bod material ts Y ₁ D _{NE}	N an 4. Refer to F (#) ≥ 0.00066 11.17 11.17 11.17	Figure 1 for 0 5 ft. Refer to V ₂ 0.0 0.0	ross section Figure 2 for	location. (ft) selection guidance.
$\begin{split} F_C = K_{ab} T^{AB} \Omega_{ab}^{AB} \\ V_D &= \text{critical velocity all } \\ V_D &= \text{mean velocity in C} \\ y_1 &= \text{mean velocity in C} \\ y_2 &= \text{average depth of } \\ D_{BB} &= \text{median grain size} \\ K_{ab} &= 11.17 \ \text{Erigibia an} \\ \hline \\ \hline \\ Conveyance zone \\ \hline \\ Kight Overbank \\ Chean-water conto \\ Live-bod contracts \\ \hline \\ \\ Live-bod contracts \\ \hline \\ $	ress Section 4 (It);1 fow in Cress Sect of bod material ts y ₁ D ₁₀ action scour = V on scour = V ₅ <	N) mn 4. Rofer to F (ft) ≥ 0.000000	No No No 0.0 0.0 0.0	Votes section Figure 2 for V1	location. (ft) selection guidance.

TxDOT Scour Analysis Spreadsheet

- Developed by TxDOT to promote accuracy and consistency
- Includes key figures and tables from Scour Analysis Guide for quick reference
- Requires input from hydraulic modeling results
- Easy-to-print documentation

$\frac{y_0}{y_1} = 2.0K_1K_2K_3\left(\frac{a}{y_1}\right)^{0.65}F_r^{-0.42}$		у,	$\leq \begin{cases} 2.4a \\ 3.0a \end{cases}$	$F_{p} \leq 0.8$ $F_{p} > 0.8$					
y _k = scour depth (ft)									
y1 = local depth of flow in Cross	Section 3 (ft)								
K1 = correction factor for pier no	orrection factor for pier nose shape, reference Table 3 & Figure 5								
Kp = correction factor for angle of	correction factor for angle of attack of flow, reference Table 4								
K ₃ = correction factor for bed co	ndition, refe								
a = pier width (ft)									
L = length of pier (ft)									
0 - angle of attack of flow (*)									
	tine 2 (accurate	to V. day	100						
F, = Froude Number in Cress Sec	the states	 Iocal velocity in Cross Section 3 (ft/s) 							
	CO 10 10 10 10	10 19 10							
	CO 10 10 10 10								
$V_{\pm}~=~local$ velocity in Cross Section	3 (R/s)								
$V_{\pm} = \text{local velocity in Cress Section}$ $g = 32.2 \text{ ft}/\text{s}^2$ $\Psi = pier nose shape (round or s$	3 (R/s)								
$V_{\pm} = \text{local velocity in Cress Section}$ $\mathcal{G} = 32.2 \text{ ft}/\text{s}^2$ $\Psi = \text{pler nose shape (round or s)}$ Conveyance zone	3 (R/s)	L	Ψ	0	К	K ₂	Ka		
$V_{\pm} = local velocity in CressSection g = 32.2 \text{ ft}/\text{s}^2\Psi = pier nose shape (round or s$	3 (ft/s) square)			0	К ₁ 1.00	K2 0.00	К ₀ 1.10		
$V_{\pm} = \text{local velocity in Cress Section}$ $\mathcal{G} = 32.2 \text{ ft}/\text{s}^2$ $\Psi = \text{pler nose shape (round or s)}$ Conveyance zone	3 (ft/s) square)			0	-				
$V_{\pm} = local velocity in Cress Section g = 32.2 \text{ ft}/s^2\Psi = pler nose shape (round or s) Conveyance zone Left Overbank$	3 (ft/s) square)			0	1.00	0.00	1.10		
V ₃ = local velocity in Cress Settler g = 32.2 ft./s ² W = pier nose shape (round or s Conveyance zone Left Overbank Main Channel	3 (n/s) square)	L			1.00	0.00 0.00 0.00	1.10 1.10 1.10		
V _k = local velocity in Cress Settler g = 32.2 ft./s ² ♥ = pier nose shape (round or s Conveyance zone Left Overbank Main Channel Right Overbank	3 (ft/s) square)		Ψ		1.00 1.00 1.00	0.00	1.10		
V ₅ = local velocity in Cross Section S = 32.2 ft./s ² IV = pier nose shape (round or s Conveyance zone Left Overbank Main Channel Right Overbank Conveyance zone	3 (n/s) square)	L	Ψ		1.00 1.00 1.00	0.00 0.00 0.00 7.me	1.10 1.10 1.10		
V ₅ = local velocity in Cross Settler g = 32.2 ft./s ² v = pier nose shape (round or s Conveyance zone Left Overbank Main Channel Right Overbank Conveyance zone Left Overbank	3 (n/s) square)	L	Ψ		1.00 1.00 1.00	0.00 0.00 0.00 <u>7</u> 0.0	1.10 1.10 1.10		

https://www.txdot.gov/content/dam/docs/design/txdot-scour-analysis-spreadsheet-2024-05-31.xlsx


TxDOT Scour Analysis Training

- DES 798 TxDOT Bridge Scour Analysis
 - Instructor-led, virtual training
 - Covers the Scour Analysis Guide
 - Guided examples using TxDOT Scour Analysis Spreadsheet
- Free, 12-hour course
 - Open to TxDOT and outside learners; no sessions currently scheduled
 - On-demand content available in SharePoint

What is a PBLR?

- Preliminary Bridge Layout Review
 - Multi-disciplinary review administered by Bridge Division
 - Purpose is to ensure TxDOT and FHWA policies are being followed <u>BEFORE</u> commencing major structural design work
 - Typically, 30% 60% PS&E completion

Challenges we wanted to address

- Address inconsistency among H&H reviewers
- Support rapid pace of project development
- Establish consistent practice for impact analyses
- And in general, we wanted to clarify the intention and guidance for each checklist item

New H&H Checklist for PBLRs

instructions in ber checkist standard review comments	 ↓ ▶ 	instructions	PBLR checklist	standard review comments	\oplus
---	-------------------------	--------------	----------------	--------------------------	----------

Instructions

- Detailed instructions for new reviewers and first-time users of the checklist
- PBLR checklist
- Standard review comments

Standard review comments are provided for each checkleit item to promote consistent feedback between reviewers for common issues. Please review the collection of standard comments (summarized) in the standard review comments (stil) before using the checklest for the first time.	After selecting a standard response from the drop-down Column H of the PBLR decklist tab , the reviewer may cop the standard text from the formula bar in bocel into the Buebeam session – and then edit the text in Bluebeam needed for specificity.
HDM Ch. 3 Sect. 5: A drainage report is required for any bridge replacement or rehabilitation project, or any readway reconstruction project impacting a FEMA special flood hazard area (SFHA). HDM Ch. 3 Sect. 5 applies to span bridges and bridge-class culverts. Drainage reports are only REQUIRED for projects in a FEMA SFHA; they are created at distinct discretion for all other circumstances, ideally with canaderation for level of complexity.	A PBLR may be conducted before the associated drainage report has been completed. • The district must provide enough information for the D HYD reviewer to verify methods and data. If additional information is needed to complete a review, the DES-H reviewer still request that information specifically. • The H&H reviewer will not hold up PBLR approval solely because a drainage report has not yet been completed - we will accept District confirmation the report will be developed later in the design process
PBLRs do not include a detailed review of hydralogy and hydraulics Distrits may request detailed HMH model reviews, on a case-by-cas Design Division.	
	promote consistent, feedback between revewers for common ssues. Heave review the collection of standard commons (summarized in the standard review comments tab) before using the Checklast for the first time. HDM Ch. 3 Sect. 5: A drainage report is required for any bridge repfocement or rehabilitation project, or any madkey reprosentation project impacting a FEMA special flood hazard area (SFIsh). HDM Ch. 3 Sect. 5 applies to span bridges and bridge-class culverts. Drainage reports are only REQUIRED for projects in a FEMA SFISH; they are created at distinct discretion for all other circumstances, ideally with canaderation for level of complexity. PBLRs do not include a detailed review of hydrology and hydraulics Distrits may request detailed relief reviews, on a case by-ca

.

New H&H Checklist for PBLRs

Drainage Area Map

· Orandama

- Copy standard, pre-populated comments from Excel into Bluebeam
- Standard review comments

New H&H Checklist for PBLRs

instructions PBLR checklist standard review comments

- Instructions
- PBLR checklist
- Standard review comments
 - This tab summarizes all the standard comment responses that are pre-populated for each checklist item

No.	ents			
Drai	inage Report			
4	(insinge type) granikal	If a Statistigan report is reached to this reaction of the second sec	If a destinance reserve to near resourced for at source of the comparison of the testing manufacture of a resource resource of the magnetic biomatain that perspect to source (2014), instruction, giving the test areas (2014), instruction, giving the test matching areas version, a structure respect to a altergo-atterty discourseest absorbing perspectives.	
Drai	inage Area Map			
2	Dratoge area map provided	Plazer provide a dismage plan trap with spremary of hadiotops data		
24	Watershed and sub-fastes defeaded and linked	Phone shan the ordinasted sub-function for the discourse and the discourse and the second states of the second states and the second states are second states and the second states are second are second states are second	The sole-bases (I) and area values its net reacts) the data provided to the dramage report. Place while the data and update.	
2.2	Waterrited and sub-basist project/AC or SuPA) showing	Peace label and show the area of the submitted and sub-basins on the deproger area reap	In case of discregances of date. Nor subscribel acreage does not match the data provides in the downage report. Places write the data and costs.	
2.2	Certiners shows with maps elevations labeled and in from deasting process description	Please Bights contrary will report electrics estate CN Please private	of continues are previded arthropy	

Thank you! Any questions?

Scour Analysis Guide

https://ftp.txdot.gov/pub/txdot-info/des/guides/scour-guide.pdf

Scour Analysis Spreadsheet

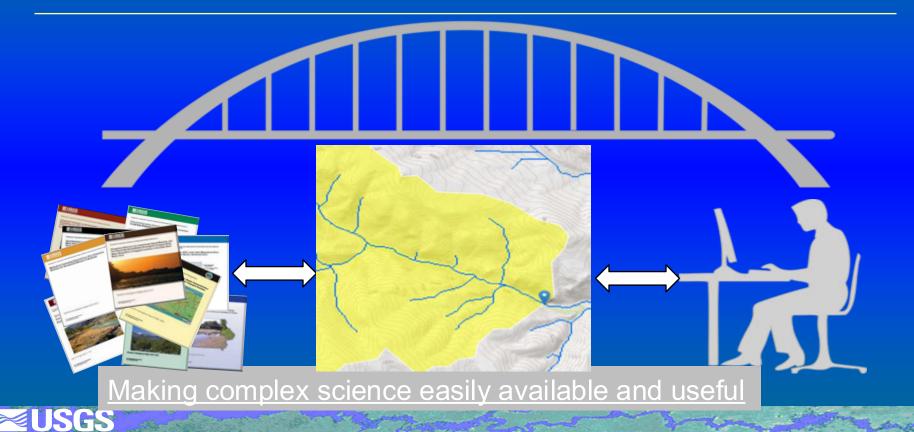
https://www.txdot.gov/content/dam/docs/design/txdot-scour-analysisspreadsheet-2024-05-31.xlsx

H&H Checklist for PBLRs

https://www.txdot.gov/ content/dam/docs/design/h-h/2024-11-14-hyd-pblr-chklst.xlsx

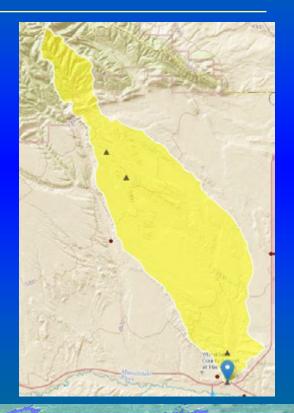
Texas StreamStats

Delivering web-based geospatial and hydrologic information to the public


By Kristine Blickenstaff and Kara Garvin, USGS April 15, 2025

In Cooperation with the Texas Department of Transportation

U.S. Geological Survey Oklahoma-Texas Water Science Center kgarvin@usgs.gov


What is StreamStats?

What is StreamStats?

Web-based map application for retrieving basin and streamflow characteristics

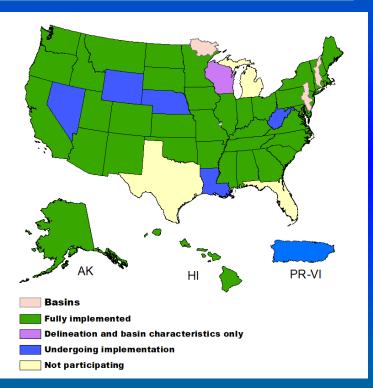
- Delineates basins
- Computes basin characteristics
- Retrieves streamflow statistics
- Solves regression equations for estimating streamflow statistics
- Plus other functionality and applications in an <u>Ecosystem of Services</u>

The Ecosystem of Services

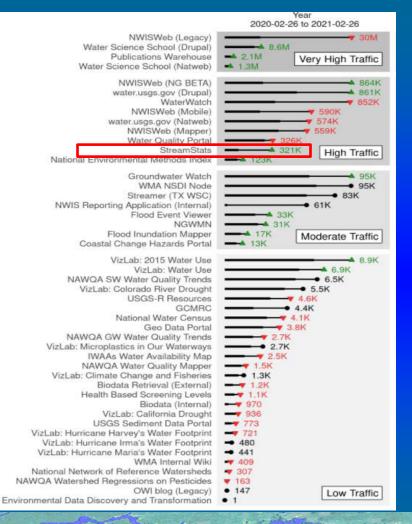
- Delineation
- Basin Edit Tools
- At-site statistics
- Ungaged estimates
- Regulation
- Rainfall runoff computations
- Hydraulic geometry
- State-specific layers (i.e. bridges)
- Coordinated flows (Indiana)
- Network navigation
- Similar gages
- Flow duration curve transfer
- StreamEST

Storm drains

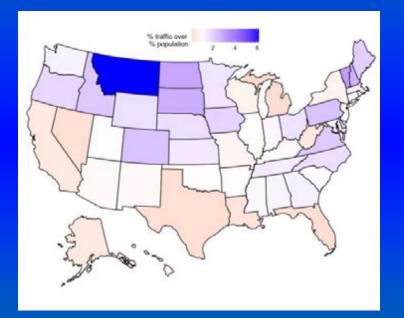
- Water Use and water availability
- International StreamStats (Rainy River Basin)
- PROSPER (Pacific Northwest)
- National Application
- Time of Travel (developing nationwide on NHDPlusV2.1)
- Fire hydrology tools and data
- Continuously solved regression equations
- NHDPlusHR Refresh
- Lidar-developed StreamStats
- Conditional hydrologic networks
- Hydraulic channel parameters
- Machine learning models (proposed)
- Sediment transport (proposed)


Who developed StreamStats?

- StreamStats application developed by USGS StreamStats development team
- Data, analyses, and equations prepared locally (USGS Water Science Centers) in cooperation with federal, state, and local cooperators
- The StreamStats Team charge is to support the WSCs to implement data, methods, and functionality



Who developed StreamStats?


- Data, applications, and availability of equations vary by state (or region)
- Innovations are everywhere
- Nearly all implemented states have flood frequency equations

Who's using StreamStats?

565

http://internal.wma.chs.usgs.gov/analytics/

South Carolina

"Over the next ten years, SCDOT anticipates a savings of \$20,300,000 (20.3 million dollars) in engineering costs. Further, the research led SCDOT to modify the Requirement for Hydraulic Design Studies and designated StreamStats as the recommended method for delineating watersheds and obtaining discharges".abstract submitted to the American Association of State Highway and Transportation Officials (AASHTO) Research Advisory Committee's (RAC) Value of Research Task Force (written communication with Jimmy Clark 5/21/2020).

StreamStats was selected as a 2019 Sweet Sixteen High Value Research Project by AASHTO

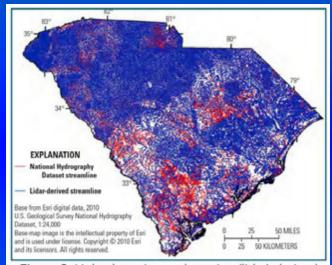


Figure 2. Light detection and ranging (lidar)-derived streamline coverage and National Hydrography Dataset coverage in South Carolina. Red lines show areas where the NHD is denser than the lidar coverage. Flow accumulation streamlines (fig. 1B) filled in these areas by adding to the lidar streamlines and continuing up stream channels.

Montana

- 2018 Presentation to ASFPM "Advantages of Collaboration with USGS"
- Needs more thorough analyses
 - □ regulated,
 - □ unregulated,
 - record extension methods
 - USGS preferred analyses based on local expertise and research of flood history
- Built on strong relationships and trust
- Flood frequency equations based on channel widths
- >700 gages of which nearly 300 are CSGs, many of which cannot be represented by NHDPlusV2

WORKING WITH USGS

- Strong Relationship with USGS MT Staff
 - Previous collaboration
 - Trust
- USGS
 - Experts in Hydrologic Analyses
 - Reports are the definitive resource for peak flow hydrology
 - Accepted by FEMA

ASFPM | June 2018

DNRC

- Advantages of Collaborating w/USGS:
 - New streamlined process for publishing Flood Frequency Updates
 - Future Projects = lower cost and higher cost share
 - Schedules/Deadlines Prioritized
 - Credibility
- Challenges & Solutions
 - Strong Relationships make a difference

https://asfpm-library.s3-us-west-2.amazonaws.com/Website/CON/H1-Story.pdf

Colorado

Colorado DOT requested a proposal to upgrade Colorado to lidar data and use surveyed culvert locations to inform the processing

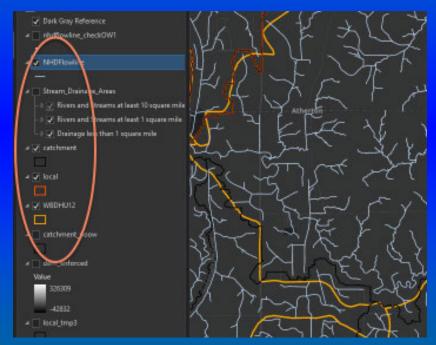
 Added datasets developed in Colorado to implement TR-55 and rational method

Customizing StreamStats for Colorado

The following Five research projects related to StreamStats put CDOT in a *Nationwide leading status*

- 2014 Crest-Stage Gage Network Research Project.
 Installation of 10 Stream Gages for Plains (Eastern Colorado)
 Hydrological Region (1)
- 2015
 - Paleo-Flood Studies Research Project for Plains Hydrologic Region (2)
 - Partial Basin Delineation Research Project for the entire state (3)
- 2016 Additional Basin Characteristics added to StreamStats for the entire state (4)
- 2017 Addition of Rational and Natural Conservation Service (formerly Soil Conservation Service) Hydrological Methods for the entire state (5)

Dr. Mommandi of the Colorado Department of Transportation presentation at the 2016 AWRA Conference in Sacramento


2/28/200

Indiana

<u>"...Streamstats is mission critical for us, we could not</u> <u>function without it at this point..."</u> -David Knipe, Indiana <u>Department of Natural Resources</u>

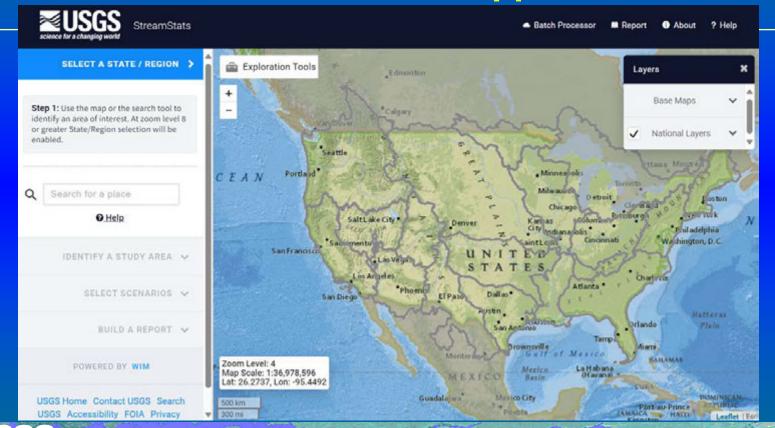
- Coordinated discharge statistics based on multi-agency MOU
- Applications directly using StreamStats services
- NHD streams resolution greater resolution than NHDPlus could process
- New 3-meter lidar derived StreamStats application in process

Minnesota

Sediment transport data Calibrated machine learning models as services (proposed) Combine machine learning models, **QPPQ** methods, and sediment transport to get daily sediment transport estimates anywhere

Prepared in cooperation with the U.S. Army Corps of Engineers, Minnesota Pollution Control Agency, and Lower Minnesota River Watershed District

Suspended-Sediment Concentrations, Bedload, Particle Sizes, Surrogate Measurements, and Annual Sediment Loads for Selected Sites in the Lower Minnesota River Basin, Water Years 2011 through 2016


Scientific Investigations Report 2016-5174

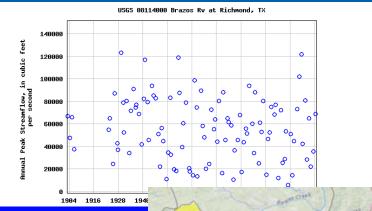
StreamStats for Texas - Data at Your Fingertips

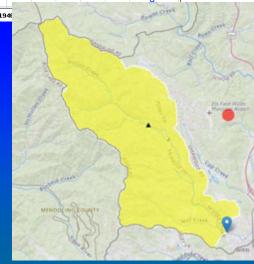
 Streamflow statistics, watershed basin boundaries, and basin characteristics such as land use aren't readily available to users at gaged and ungaged sites along a stream.

USGS StreamStats Application

USGS StreamStats Application

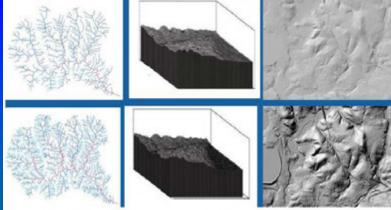
 StreamStats is a map-based web application that provides an assortment of analytical tools that are useful for water-resources planning and management, and engineering purposes


 StreamStats provides estimates of streamflow statistics for user selected ungaged sites on streams as well as for USGS streamgages



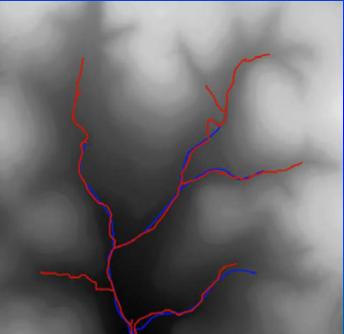
StreamStats Outputs

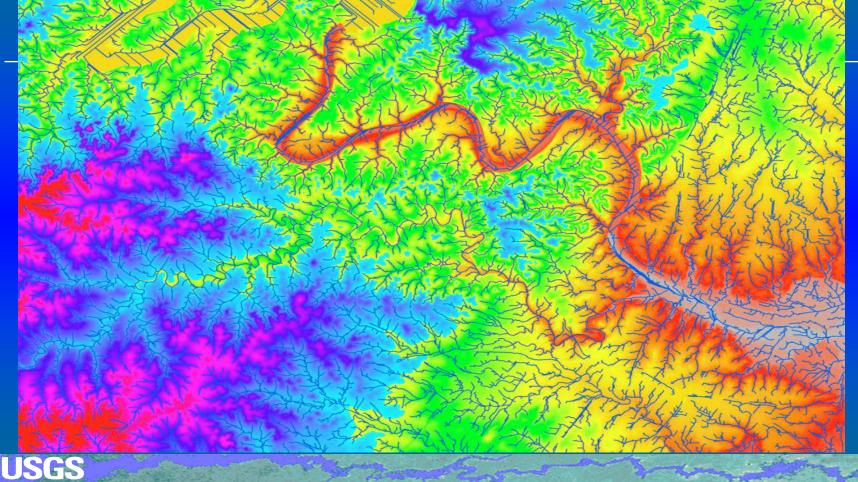
The Texas StreamStats application will provide automated tools to:


- 1) Delineate basins
- 2) Derive basin characteristics
- 3) Generate peak-flow flood frequency statistics
- 4) Create reports with tables and maps
- 5) Download geographic information system (GIS) basin boundary and spreadsheet files
- 6) Link to published USGS reports and data.

Digital Elevation Model

- Statewide 3-meter Lidar DEM dataset from Fathom
- Stream lines will be developed from the DEM data using geospatial tools
- Creating a new 3-meter statewide stream layer




Lidar Derived Streamlines

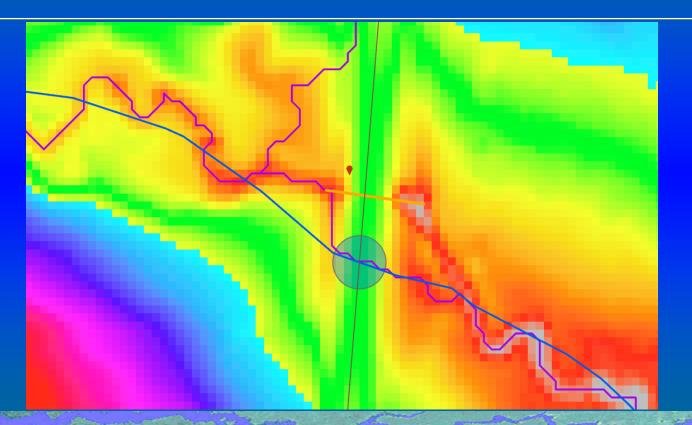
A 3-meter stream-line dataset will be created for Texas as a product of this project

- Cutting-edge methodology
- Created using lidar dem data
- Includes precise detail- only Texas and Florida using this updated method
- Streamlines will extend further upstream

Lidar Derived Streamlines

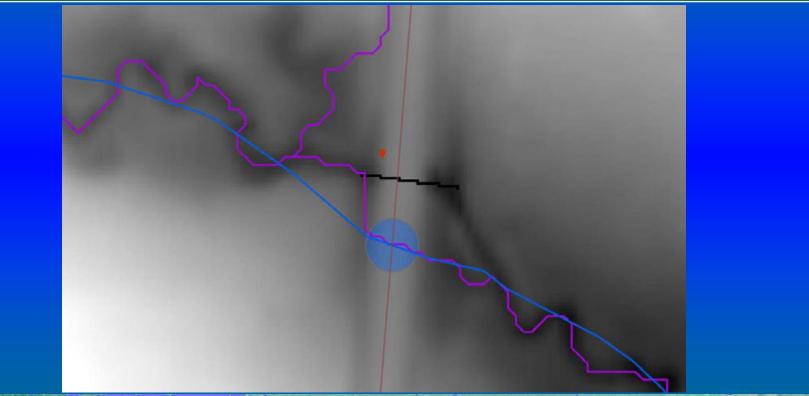
Culvert Breaching

- TxDOT Bridge-class culvert inventory dataset
- TxDOT Roadways
- National Hydrologic Database (NHD)



Culvert Breaching

Blue line = NHD Purple line = Lidar derived stream Orange line = Culvert breachline Brown line = TxDOT Roadway

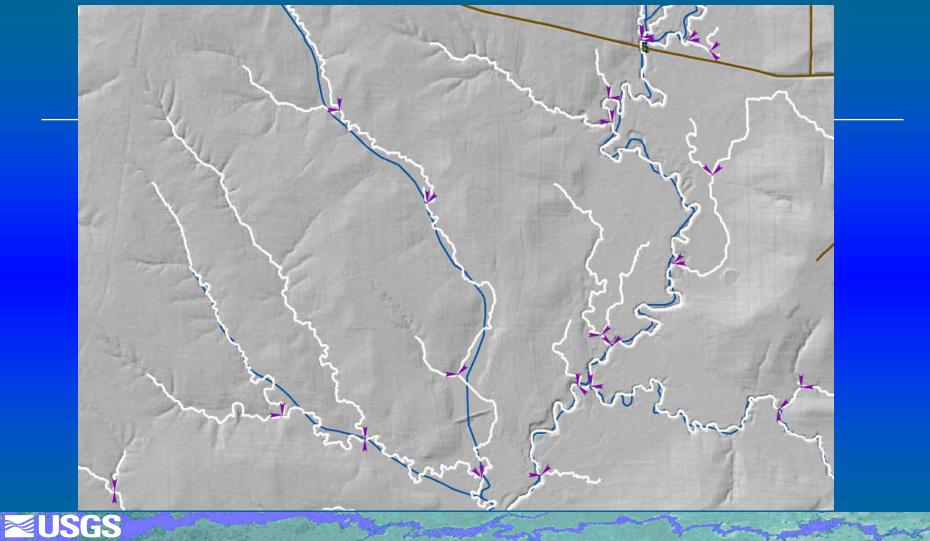


Culvert Breaching with 3-meter DEM

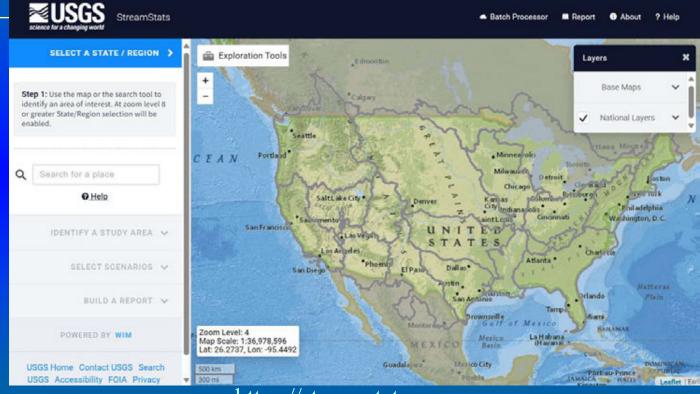
Culvert Breaching- DEM breached

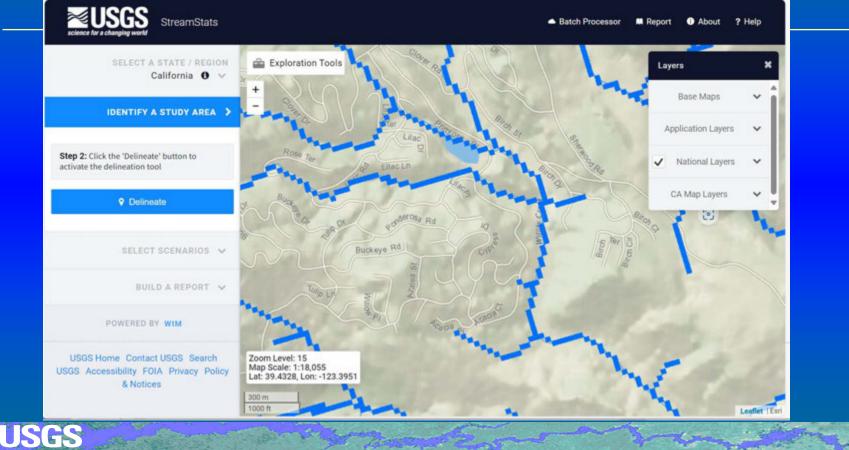
Culvert Breaching

≥USGS

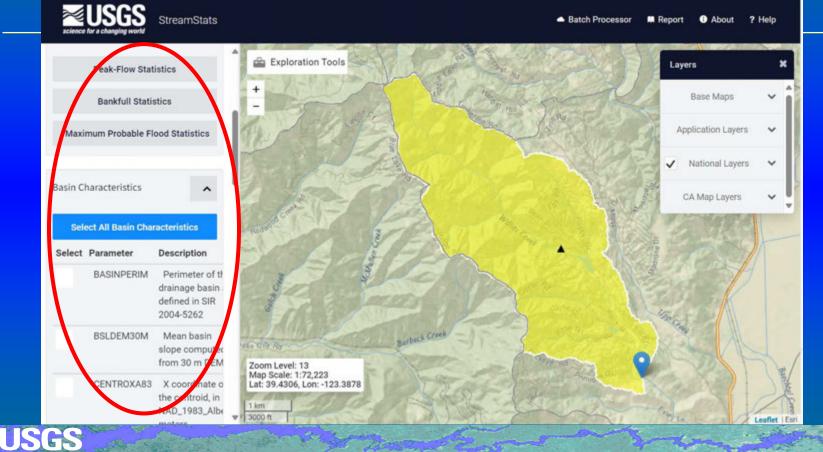

New Streamlines By The Numbers

- HUC4- 1210 Central Texas Coast
- TxDOT culverts = 2,877 (21,433 total in statewide dataset)
- Breachlines created = 15,692
- NHD Streamline length = 36,691 miles
- New created str50k streamline length = 117,659 miles
- 3+ times more streamlines





USGS StreamStats Application



https://streamstats.usgs.gov

Streamlines

Basin Delineation

Report

StreamStats Report

Collapse All

Computed Basin Characteristics

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	7	square miles
ELEV	Mean Basin Elevation	2018	feet
ELEVMAX	Maximum basin elevation	2811	feet
FOREST	Percentage of area covered by forest	64.5	percent
LAKEAREA	Percentage of Lakes and Ponds	0.17	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	13.6	percent
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	0.4	percent
MINBELEV	Minimum basin elevation	1472	feet
OUTLETELEV	Elevation of the stream outlet in feet above NAVD88	1472	feet
PRECIP	Mean Annual Precipitation	57.8	inches

Texas Basin Characteristics

Name	Description					
Drainage Area	Area that drains to a point on a stream					
Stream Slope Blue Line Method	Change in elevation of the longest blue-line stream (not extended to the boundary) divided by stream length					
Mean Annual Precipitation	Mean Annual Precipitation					
Stream Density	Stream Density total length of streams divided by drainage area					
Mean Basin Elevation	Mean Basin Elevation					
Mean Basin Slope ft per mi	Mean basin slope determined by summing lengths of all contours in basin mulitplying by contour interval and dividing product by drainage area					
Percent agriculture	Percent agriculture computed as total of grass, pasture, and crops, from current NLCD classes 71, 81 and 82					
Percent Forest from NLCD	Percentage of forested area from current NLCD classes 41-43					
Percent Storage from NLCD	Percentage of area of storage from current NLCD classes 11-12, 90, 95					
Percent Developed from NLCD	Percentage of developed (urban) land from current NLCD classes 21-24					
Percent_Impervious_NLCD	Average percentage of impervious area determined from current NLCD impervious dataset					
Average Soil Permeability	Average Soil Permeability					
Main Channel Sinuosity	Main Channel Sinuosity					
Texas Ecological Regions (10)	Percentage of area within the 10 Texas Ecological Regions					
Mean Monthly Precipitation (12)	Mean monthly precipiation for each of the twelve months					

USGS

Estimated Peak Flows

Peak-Flow Statistics Parameters [2012 5113 Region 1 North Coast]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	7	square miles	0.04	3200
PRECIP	Mean Annual Precipitation	57.8	inches	20	125

Peak-Flow Statistics Flow Report [2012 5113 Region 1 North Coast]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PIL	PIU	ASEp
50-percent AEP flood	570	ft*3/s	234	1390	58.6
20-percent AEP flood	1040	ft^3/s	498	2170	47.4
10-percent AEP flood	1380	ft^3/s	686	2780	44.2
4-percent AEP flood	1820	ft^3/s	934	3550	42.7
2-percent AEP flood	2150	ft^3/s	1100	4200	42.7
1-percent AEP flood	2500	ft^3/s	1250	5000	44.3
0.5-percent AEP flood	2820	ft^3/s	1410	5650	44.4
0.2-percent AEP flood	3250	ft^3/s	1580	6670	46

Peak-Flow Statistics Citations

Gotvald, A.J., Barth, N.A., Veilleux, A.G., and Parrett, Charles, 2012, Methods for determining magnitude and frequency of floods in California, based on data through water year 2006: U.S. Geological Survey Scientific Investigations Report

TX- Regional Regression Equations

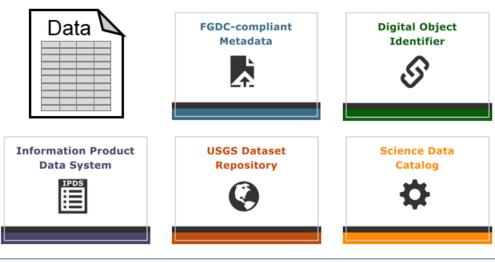
Using existing USGS developed estimating equations

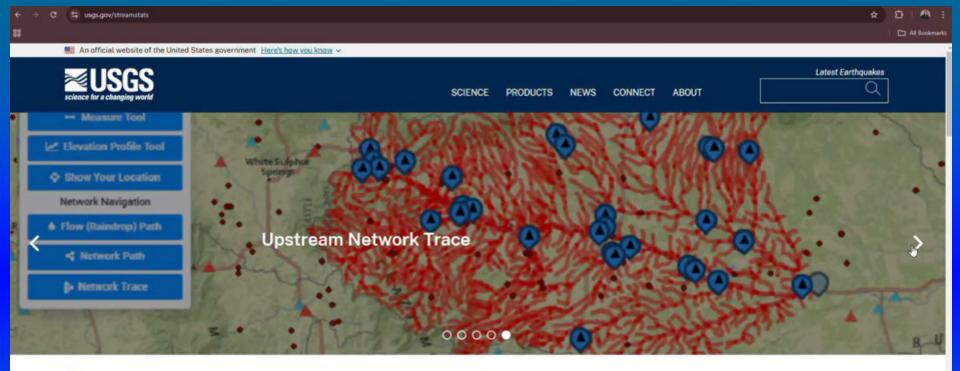
Asquith, W.H., and Roussel, M.C., 2009, [http://pubs.usgs.gov/sir/2009/5087]

Asquith, W.H., Herrmann, G.R., and Cleveland, T.G., 2013, [https://doi.org/10.1061/(ASCE)HE.1943-5584.0000635]

Benefits of StreamStats

- Use of higher-resolution datasets
 - Refined consistent estimates of streamflow
 - More detail to smaller basins
- Output of **CONSISTENT** basin characteristic values for and streamflow statistics
- Peak-streamflow frequency estimates are needed by planners, managers, and design engineers for flood-plain management; for objective assessment of flood risk; for cost-effective design of roads and bridges; and also for the design of culverts, dams, levees, and other flood-control structures.




USGS ScienceBase Data Release

 Digital elevation, flow direction, flow accumulation, and new streamline GIS data as well as basin characteristic datasets

Elements of a USGS Data Release

HOME

StreamStats

STREAMSTATS FUNDAMENTALS

APPLICATIONS

HOW-TO GUIDES

and for engineering and design purposes. The map-based user interface can be used to delineate drainage areas, get basin characteristics and estimates of flow statistics, and more. Available information varies from state to state.

StreamStats provides access to spatial analytical tools that are useful for water-resources planning and management,

Was this page helpful?

For more information on StreamStats:

https://www.usgs.gov/streamstats

Thank you!

