Surface Aggregate Classification of Reclaimed Asphalt Pavement (RAP)

Texas A&M Transportation Institute

Sheng Hu and Fujie Zhou March 27, 2024

Presentation outline

- Introduction
- Skid resistance and SAC system
- Dynamic friction test (DFT) for measuring aggregate friction
- RAP DFT measurement and its impact on mix slab friction
- Preliminary DFT-based SAC for RAP
- Pilot implementation
- □ Q/A

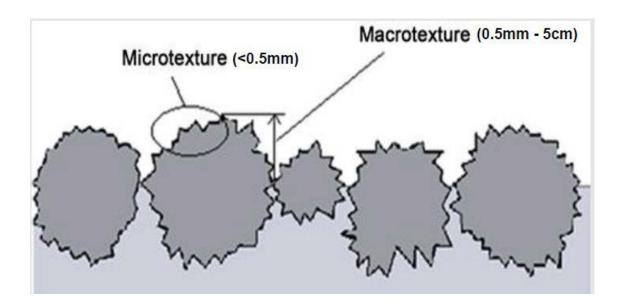
Introduction

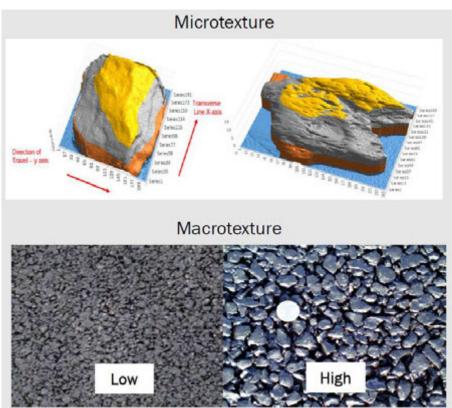
Skid resistance of asphalt pavement is critical for safety.

□ TxDOT has a goal of cutting fatal crashes in half by 2035 and zero fatalities by 2050.

Introduction

- Demand for SAC-A aggregates significantly increases year after year.
- Both TxDOT and asphalt industry advocate for sustainability.
 - RAP = asphalt binder + aggregates




□ The research objective was to investigate if RAP with SAC-A aggregates can be used as SAC-A rather than SAC-B.

Skid resistance is a function of Microtexture and Macrotexture.

■ Aggregate type: Microtexture

■ Mix type: Macrotexture

Current SAC system:

Indirect measurement of aggregate texture

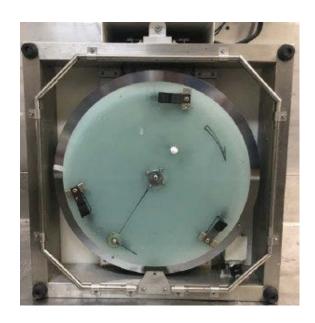
Property	Test Method	SAC A	SAC B	SAC C
Acid Insoluble Residue, % Minimum	Tex-612-J	55	-	
5-Cycle Mg Sulfate Soundness, % Maximum	Tex-411-A	25	30	35

Acid Insoluble Residue

□ One SP-C mix with 53.4% SAC-A aggregate

Class (A)	Rock (Y/N):	No	Yes	No	No	No			
Sieve	Size:	Indicated Date 9/	Indianal Data W	Individual Dat. 9/	Indicated Date of	Indicated Date of	Indicated Date 9/	Indicated Data 90	Indicated Date 9/
Passing	Retained	Individual Ret., %	Individual Ret., %	Individual Ret., %	Individual Ret., %	Individual Ret., %	Individual Ret., %	Individual Ret., %	Individual Ret., %
*/	1"	4	0.0	0.0	0.0				0.0
11	3/4"	9	0.0	0.0	0.0				0.0
3/4"	1/2"		7.6	0.0	0.0				0.0
1/2"	3/8"		7.8	2.8	0.0				0.6
3/8"	No. 4		11.2	14.8	0.3				4.8
No. 4	No. 8	9	0.3	6.5	4.3				5.2
No. 8	No. 16	§ //	0.1	0.3	7.8				2.4
No. 16	No. 30	9	0.1	0.3	4.5		2		1.6
No. 30	No. 50		0.3	0.1	2.9				1.4
No. 50	No. 200	6	0.1	0.1	3.5				2.4
No. 200	Pan	9	0.5	0.3	3.7				1.6
	Total:		28.0	25.1	27.0				19.9
Percent	of plus No. 4		26.6	17.6	0.3		×		5.4
Percent	of plus No. 8		26.9	24.1	4.6				10.5
F	Percent of plu	s No. 4 from class			Percent of pl	us No. 8 from class			
		Total Percent of					plus No. 8 66.1		
Percent of plus No. 4 from class (A) Rock 53.4				Percent of pl	us No. 8 from class	(A) Rock: 40.7			

Fiscal	Skid	Skid Test
Year	Number	Date
2019	28.6	5/6/2019
2019	23.0	5/6/2019
2019	28.1	5/6/2019
2019	30.3	5/6/2019
2019	31.0	5/6/2019
2019	36.4	5/6/2019
2919	24.8	5/6/2019
2019	25.1	5/6/2019
2019	29.0	5/6/2019
2019	22.3	5/6/2019
2019	27.5	5/6/2019
2019	27.1	5/6/2019
2019	24.4	5/6/2019
2019	30.5	5/6/2019
2019	26.2	5/6/2019
2019	30.4	5/6/2019
2019	31.1	5/6/2019
2019	28.0	5/6/2019
2019	25.4	5/6/2019
2019	19.1	5/6/2019

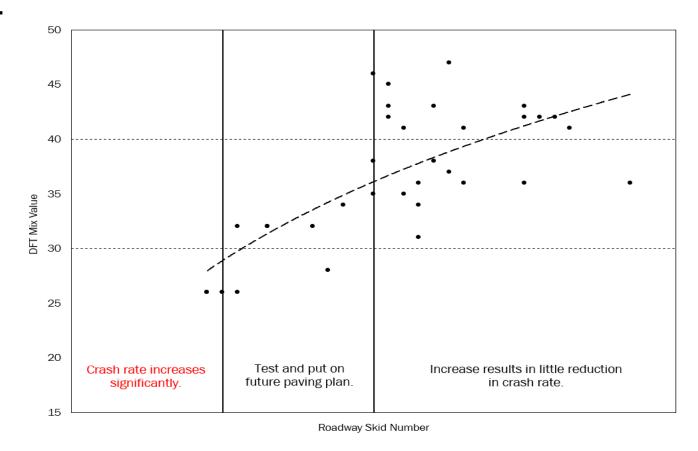


One SP-D mix with 100% SAC-A aggregates

Class (A)	Rock (Y/N):	Yes	Yes	Yes	No		
Sieve	Size:	Individual Ret., %	Individual Ret., %	Individual Ret., %	Individual Ret., %	Individual Ret., %	Individual Dat. 60
Passing	Retained	individual Ret., %	individual Ret., %	individual Ret., %	Individual Ret., 76	individual Ret., %	Individual Ret., %
	3/4"	0.0	0.0	0.0	0.0		
3/4"	1/2"	0.0	0.0	0.0	0.0		
1/2"	3/8"	4.8	0.0	0.0	0.0		
3/8"	No. 4	28.1	6.5	1.4	0.0		
No. 4	No. 8	12.4	2.7	7.3	0.0		
No. 8	No. 30	3.3	0.5	12.7	0.0		
No. 30	No. 50	0.3	0.0	2.8	0.0		
No. 50	No. 200	0.4	0.1	2.8	8.3		
No. 200	Pan	0.9	0.2	3.1	1.7		
	Total:	50.0	10.0	30.0	10.0		
Percent	of plus No. 4	32.9	6.5	1.4	0.0		
Percent	of plus No. 8	45.2	6.6	8.6	0.0	L	
F	Percent of plu	s No. 4 from class	(A) Rock 40.7		Percent of pl	us No. 8 from class	(A) Rock: 63.1
		Total Percent of p	olus No. 4 40.7			Total Percent of	plus No. 8 63.1
-	Percent of plu	f plus No. 4 from class (A) Rock 100.0 Percent of plus No. 8 from class (A) Rock			(A) Rock: 100.0		

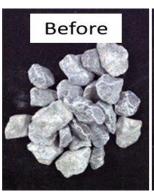
Fiscal Year	Skid Number	Skid Test Date		
2016	32.0	7/18/2016		
2016	30.0	7/18/2016		
2016	28.0	7/18/2016		
2016	27.0	7/18/2016		
2016	30.0	7/18/2016		
2016	35.0	7/18/2016		
2016	33.0	7/18/2016		
2016	36.0	7/18/2016		
2016	38.0	7/18/2016		
2018	20.6	6/20/2018		
2018	19.4	6/20/2018		
2018	19.6	6/20/2018		
2018	19.6	6/20/2018		
2018	24.4	6/20/2018		
2018	21.6	6/20/2018		
2018	34.7	6/21/2018		
2018	38.0	6/21/2018		
2018	36.1	6/21/2018		

- Dynamic friction test (DFT): direct measurement
 - Measures a friction value on wet pavement surface (ASTM E1911)
 - Spinning disk with 3 rubber sliders contacting surface as disk rotates.



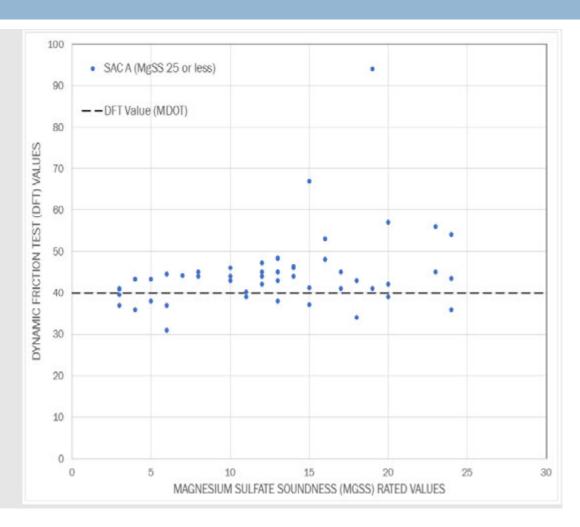
 Maryland DOT used DFT to measure aggregate friction.

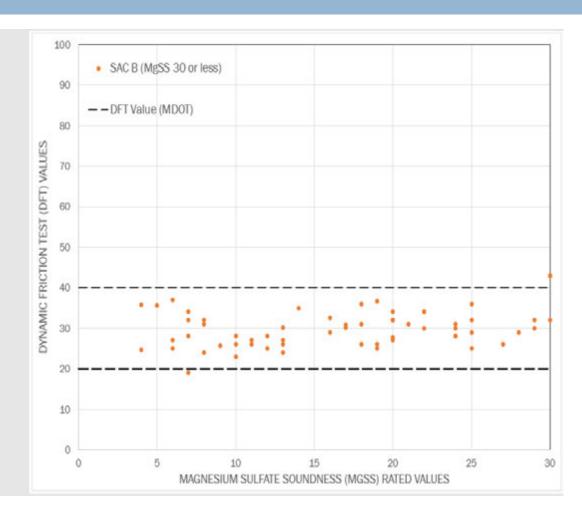
 Richard Izzo's group at MTD established its own test procedure.



TxDOT DFT test

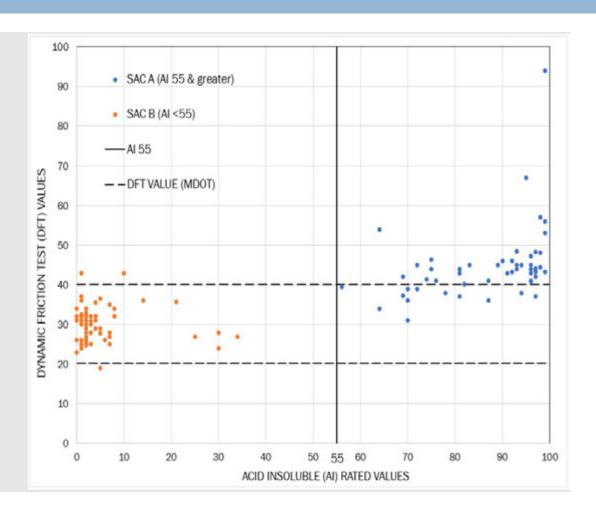
- \blacksquare Micro-Deval polishing aggregates: 10,500 revolutions for 1-3/4 hours
- \blacksquare Prepare an aggregate ring: passing 3/8" sieve and retaining on $\frac{1}{4}$ " sieve
- Run DFT to measures aggregate frictional property: DFT value



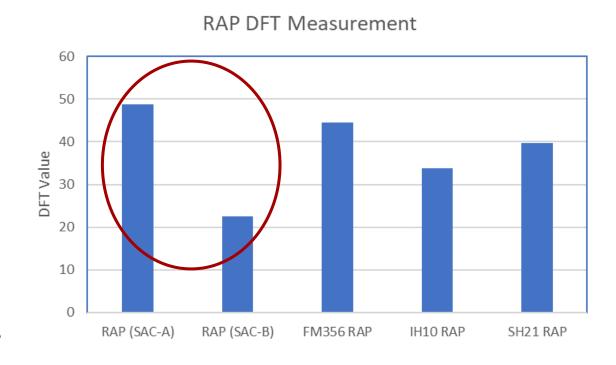


- □ Richard Izzo
 - 2020 TxDOT short course
- DFT values of individual aggregate sources, not blended values.
- All material codes combined Dolomite, Gravel, Igneous, Lightweight, Limestone, and Sandstone.
- Poor correlation/trend of Soundness to DFT Value for SAC A sources.
- Soundness not a strong indicator of friction for SAC A sources.

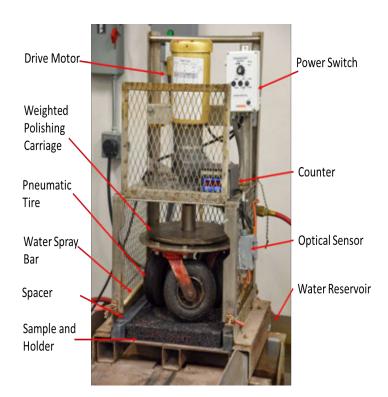
- □ Richard Izzo
 - 2020 TxDOT short course
- All material codes combined Dolomite,
 Gravel, Igneous, Lightweight, Limestone,
 and Sandstone.
- Poor correlation/trend of Soundness to DFT Value for SAC B sources.
- Soundness not a strong indicator of friction for SAC B sources.

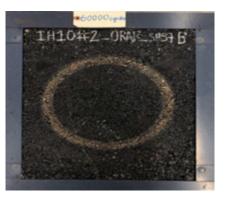


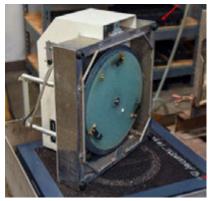
□ Richard Izzo


2020 TxDOT short course

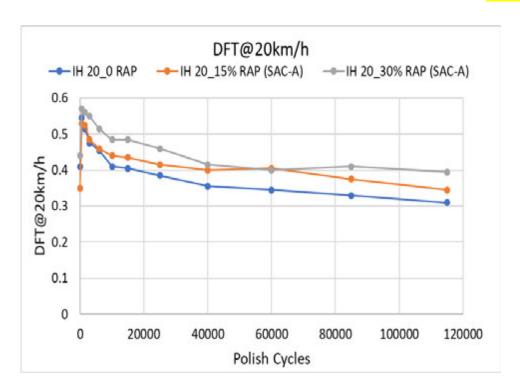
- DFT value compared with acid insoluble for SAC A and SAC B sources.
- All material codes combined Dolomite, Gravel, Igneous, Lightweight, Limestone, and Sandstone.
- Generally, a high Al > 55 will produce a higher DFT Value.
- DFT does a good job differentiating aggregate sources with lower Al values.

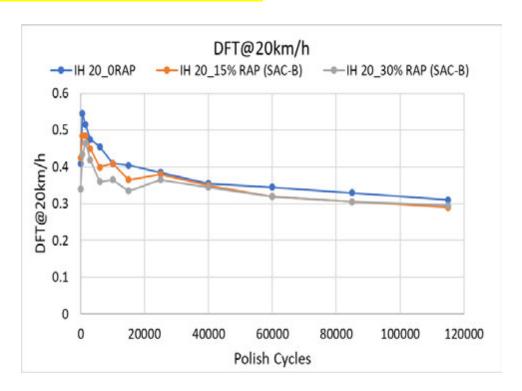

- Ignition oven test
- Micro-Deval polishing
 aggregates: 10,500 revolutions
 for 1-3/4 hours
- □ Prepare an aggregate ring: passing 3/8" sieve and retaining on 1/4" sieve
- Run DFT to measures aggregate frictional property

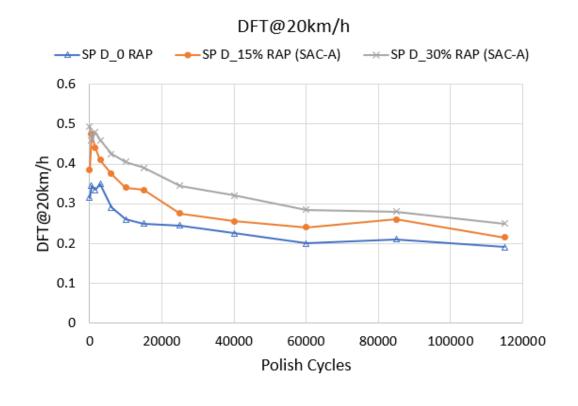


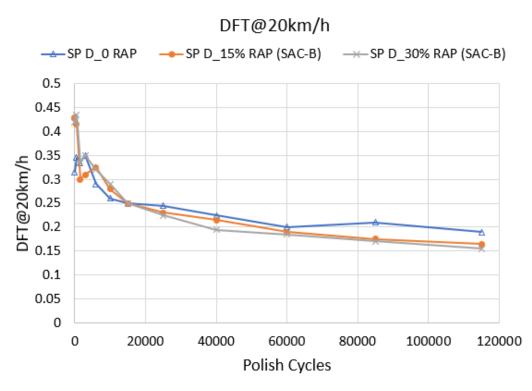


□ RAP impact on mix slab DFT









□ RAP impact on mix slab DFT: one curve=one week

Preliminary DFT-based SAC for RAP

20 mixes (40 slabs=8 months' testing)

SN is a function of mixture microtexture
 (DFT) and macrotexture
 (measured by circular track meter-CTM in mean profile depth-MPD)

Mixture Name	Slab DFT * 100 (@ 3000 Cycles)			IFI	SN (50)
FM 356_0 RAP	49	41.8	0.748	0.261	26.3
FM 356_15% RAP (SAC-A)	52	42.8	0.661	0.278	28.4
FM 356_30% RAP (SAC-A)	50.5	42.8	0.641	0.270	27.3
FM 356_15% RAP (SAC-B)	46.5	40.7	0.865	0.247	24.7
FM 356_30% RAP (SAC-B)	45	38.5	0.537	0.239	23.7
IH 20_0 RAP	47.5	32	0.682	0.253	25.3
IH 20_15% RAP (SAC-A)	48.5	33.5	0.730	0.259	26.0
IH 20_30% RAP (SAC-A)	55	35.1	0.694	0.296	30.5
IH 20_15% RAP (SAC-B)	45	31.2	0.473	0.239	23.7
IH 20_30% RAP (SAC-B)	42	30.4	0.408	0.223	21.8
IH 10_0 RAP	26	29.3	0.513	0.147	13.2
IH 10_15% RAP (SAC-A)	31	31.1	0.500	0.169	15.6
IH 10_30% RAP (SAC-A)	38	32.2	0.460	0.202	19.4
IH 10_15% RAP (SAC-B)	25.5	29.3	0.772	0.144	12.9
IH 10_30% RAP (SAC-B)	22.5	28.7	0.473	0.132	11.7
SP D_0 RAP	35	33.4	0.775	0.188	17.7
SP D_15% RAP (SAC-A)	41	34.2	0.653	0.218	21.2
SP D_30% RAP (SAC-A)	46	35.7	0.657	0.245	24.3
SP D_15% RAP (SAC-B)	31	31.8	0.462	0.169	15.6
SP D_30% RAP (SAC-B)	35	31	0.460	0.188	17.7

Preliminary DFT-based SAC for RAP

Property	Test Method	SAC-A for RAP
Micro-Deval loss, % max (TxDOT 0-6959)	Tex-461-A	15
DFT *100 (After Micro-Deval), min	ASTM E1911 TxDOT aggregate ring	43

Pilot implementation project 5-7025-01

- Select 3 field projects with milled RAP
- Evaluate RAPs using both SAC aggregate tests and DFT
- Design the mixes using the SAC-A RAPs
- Construct field test sections with the SAC-A RAPs
- Monitor and measure field skid number and DFT friction
- Verify and adjust the preliminary SAC-A RAP criteria
- □ Training workshops

Q/A

Thank You All!