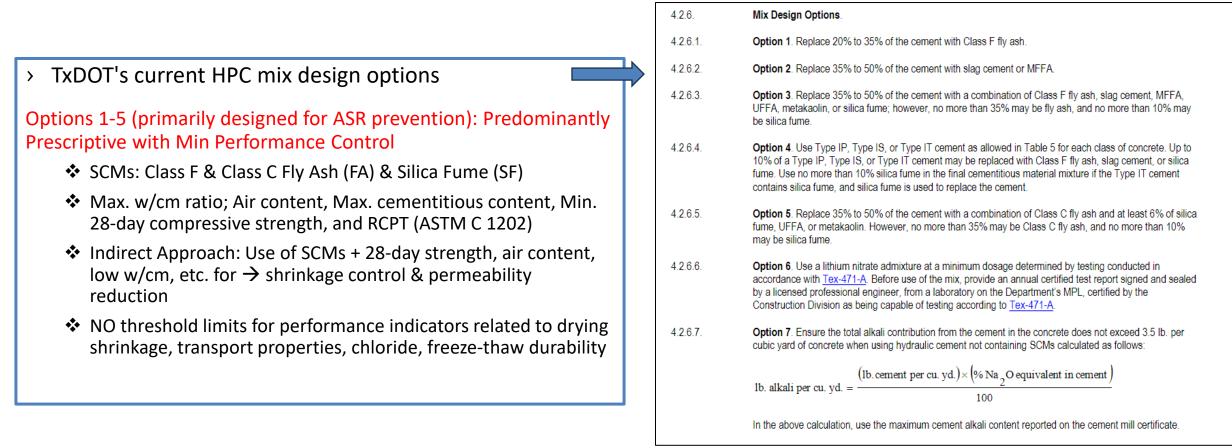
Development of the TxDOT Tool for Rapid Durability-Based Performance Evaluation of HPC Mixes (Project 0-6958)

Anol Mukhopadhyay – Principal Investigator (PI) Pravin Saraswatula – Assistant Research Scientist

TxDOT Construction, Materials, and Alternative Delivery 2024 Conference March 26, 2024, 3:30 – 4:30 PM CST, The Royal Sonesta Galleria, Houston, Texas

Agenda


Presenting the TxDOT Tool

- Our rapid durability-based performance evaluation approach led to the development of TxDOT Tool
- Explaining input sheets, calculation sheets, and outputs
- Field Case Studies to explain the usefulness of the Tool
- A comprehensive durability-based performance evaluation using the Tool addresses the development of innovative performance-based specifications for HPC

Future work

Project 0-6958: Introduction

TxDOT employs Class S High-Performance Concrete (HPC) predominantly for bridge deck construction in Texas

(Item 421 Hydraulic Cement Concrete, TxDOT 2014)

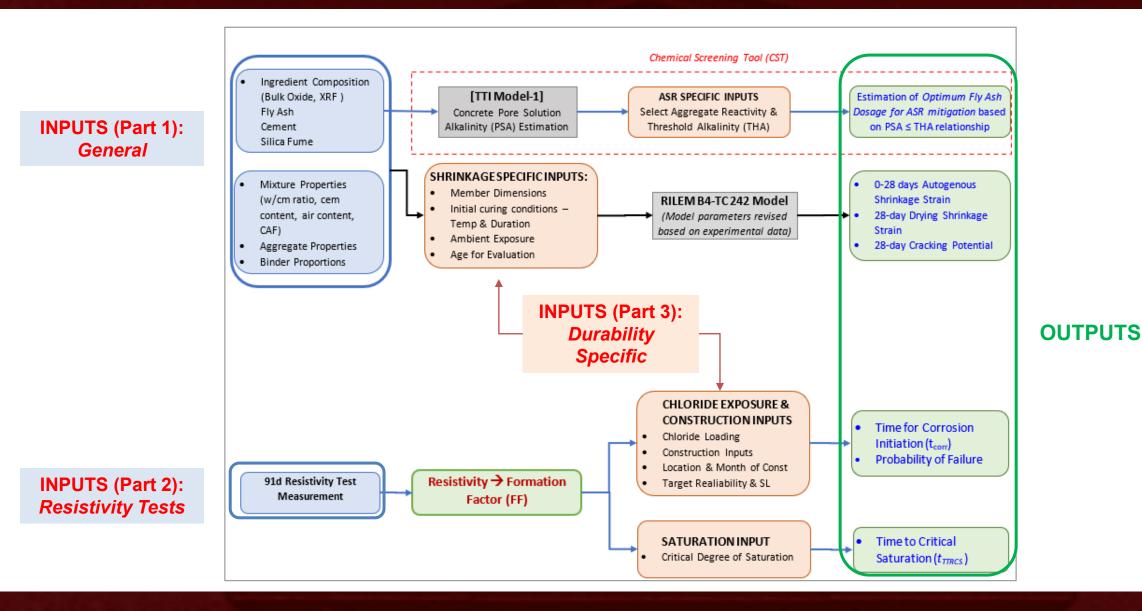
Identify Critical Durability Indicators Through Different Tasks in the Project

To Identify Critical Durability Indicators that influence the field performance of HPC mixes, a combined approach was used involving:

- Field investigation of selective HPC bridge decks & laboratory study of field cores (Tasks 3-4) covering current mix design practices (green highlighted mixes)
 - 5 Bridge Decks in Amarillo, 2 Bridge Decks in Lubbock, and 2 Bridge Decks in Galveston
 - To understand whether the selected HPC deck mixes meet the HPC requirements
- 2. Detailed Lab evaluation program (Tasks 4-6): Formulate 8 (7 + 1 control) representative mixes covering Item 421
 - commonly used SCM replacement levels in the State of Texas, and covering the min-max (low & high ends) replacement percentage for the current mix design options
 - Identify the performance indicators to do durability-based performance evaluations

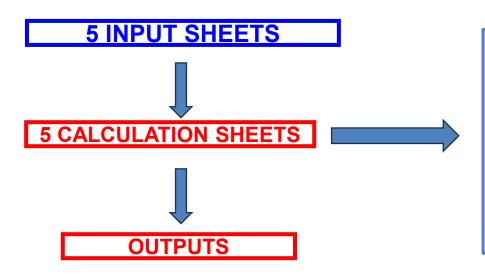
HPC Mix designs for Field Study (green highlighted) and Laboratory Evaluation (all)

Option	Mix	#1	#2
1	Replace 20% to 35% of the cement with Class F fly ash.	25% Class F Fly Ash (Galveston, TX)	35% Class F Fly Ash
3	Replace 35% to 50% of the cement with a combination of Class F fly ash or silica fume; however, no more than 35% may be fly ash, and no more than 10% may be silica fume.	20% Class F Fly Ash + 5% Silica Fume	
5	Replace 35% to 50% of the cement with a combination of Class C fly ash and at least 6% of silica fume. However, no more than 35% may be Class C fly ash, and no more than 10% may be silica fume.	29% Class C Fly Ash + 6 % Silica Fume (Amarillo, TX)	35% Class C Fly Ash + 10% Silica Fume
x	Binary Mixes (Project Specific Mix Design Options)	6% Silica Fume (Amarillo, TX)	35% Class C Fly Ash (Lubbock, TX)


Our Approach to Durability-Based Performance Evaluation of SCMs in HPC Bridge Deck Mixes

Rapid & comprehensive durability-based performance evaluation of cast-in-place High-Performance Concrete (HPC) bridge deck mixes during the mix design stage, trial batch stage and/or field mix.

- > Covers four major durability aspects:
 - 1. Alkali Silica Reaction (ASR) Mitigation: Chemical Screening Tool (CST) to predict SCM dosage for ASR mitigation
 - 2. Shrinkage: Estimation of Autogenous & Drying Shrinkage Strains and Cracking Potential based on RILEM B4 Model (RILEM TC 242)
 - **3.** Chloride Durability: resistance to chloride ion ingress:
 - 1. Estimated Time to Rebar Corrosion.
 - 2. Determination of Probability of Failure Based on Target Reliability Levels (SHRP2-probabilistic model)
 - 4. Freeze-Thaw (F/T) Durability: F/T performance prediction in terms of estimating "Time to Critical Saturation"


A simplified, user-friendly Excel-based spreadsheet was developed for DOT practitioners and contractors

TxDOT Tool: Input-Output Connections in the form of a Flow Chart

TxDOT Tool

Three Sections

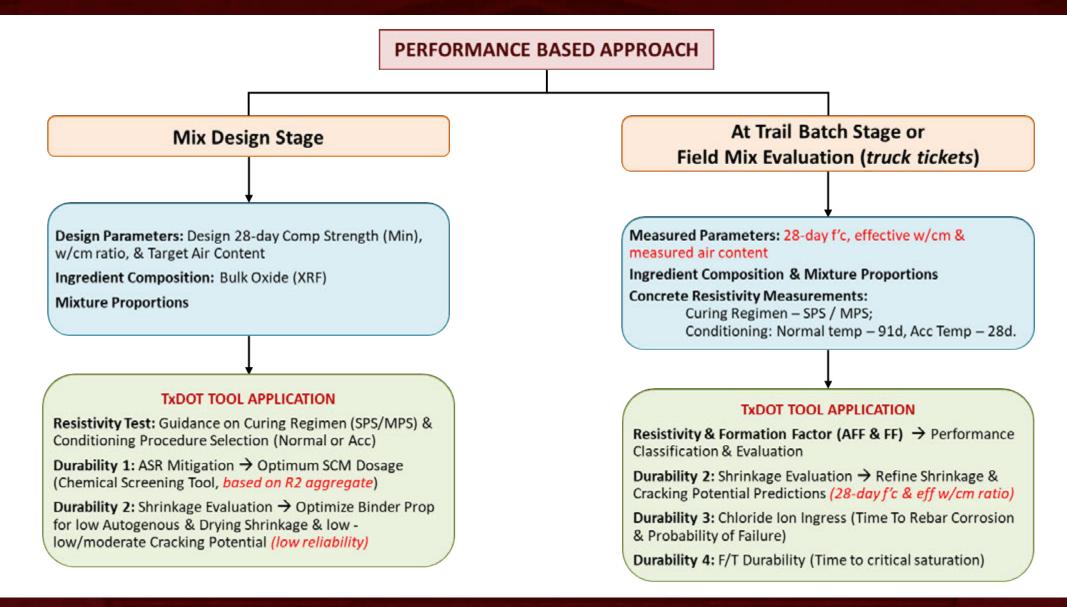
- Calculation Sheets: Background calculations, Prediction Models & Experimental data (Task 3 – Task 8)
 - 1. Mixture Proportioning & Hydration Modelling (mod. Powers model)
 - 2. Pore solution models (TTI Model-1 & TTI Model-2)
 - 3. Shrinkage Evaluation
 - 4. Resistivity-FF (also contains F/T durability model)
 - 5. Chloride diffusion Modelling

Use of experimental data (Tasks 3-8)

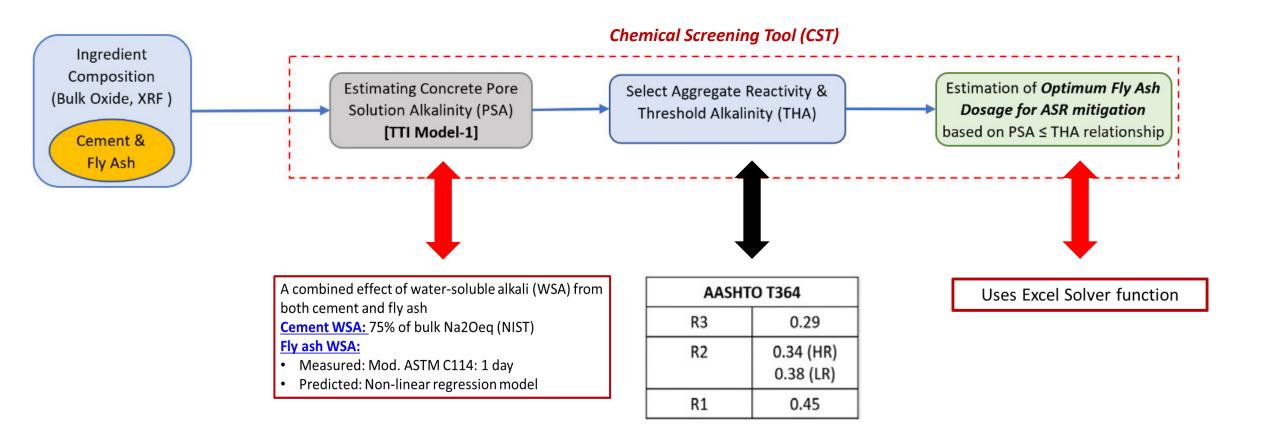
- Power model hydration prediction
- TTI Model-2: alkali binding factors refined by GEMS and literature extraction
- Shrinkage model corrections to fit the studied HPC mixes
- Resistivity-Formation Factor(FF): determination of saturation correction factors
- Cl diffusion: Binding model refinement

TxDOT Tool: Inputs (Part 1)

Key Input – Project Information Sheet


Direct Inputs from the 2014 TxDOT Mix Design Sheet

1. HPC mix information*


- 2. Material & Mix Proportions
 - > Aggregate Properties
 - > Cementitious Materials
 - > Proportions
- 3. Ingredient Composition

	PROJECT INFORMATION (HYDRAULIC CEMENT CONCRETE MIX DESIGN & CONTROL)					
	Remarks: Input sheet for project summary			User Input		
	information (Reference: TxDOT 2014-	Color Guide &		Select From List Option		
	Hydraulic Cement Concrete Mix Design &	Notation		Warning Text or Note		
	Control)			Intermediate Output		
-	Project Information		Commonte			
$\overline{\mathbf{N}}$	Oranata Olara an Diana	class 6 UDC	Comments	Ref (2014 TxDOT Mix Design Sheet)		
	Concrete Class on Plans:	Class S HPC		Project Summary		
	Compressive Strength, 28-Day f'c (psi):	4000	Design or Measured	Project Summary or Trial Batch Results		
	Mix design w/c or w/cm:	0.42	Design or Field	Water&Cement or Truck Tickets		
	Total Cementitious Content (lbs/CY):	504	Mix Design max.	Water&Cement		
	Air Content (%):	5.5%	Target or Measured	Air-Entrainment or Trail Batch Results		
	Specified Coarse Aggregate Factor (CAF):	0.71		Dry Batch Weights		

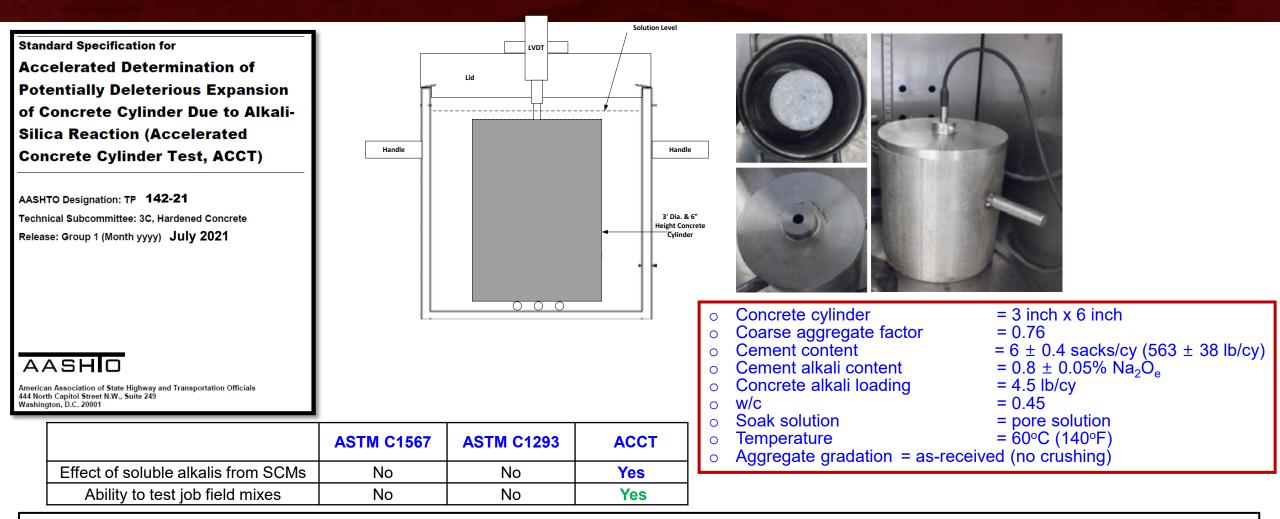
Application of TxDOT Tool at Different Stages, Inputs & Outputs

TxDOT Tool Approach: Chemical Screening Tool (CST) to Predict Optimum SCM Dosage for ASR Prevention

- 1. Saraswatula, P., Mukhopadhyay, A., & Liu, K. W. (2022). Development of a Screening Tool for Rapid Fly Ash Evaluation for Mitigating Alkali Silica Reaction in Concrete. Transportation Research Record
- 2. Liu, K. W., & Mukhopadhyay, A. K. (2016). Accelerated concrete-cylinder test for Alkali-Silica Reaction. Journal of Testing and Evaluation
- 3. Mukhopadhyay, A. K., Liu, K. W., & Jalal, M. (2019). An innovative approach to fly ash characterization and evaluation to prevent alkali-silica reaction. ACI Materials Journal, 116

Our Performance-Based ASR Evaluation Approach

Step 1: Use the Chemical Screening Tool (CST) to predict for optimum Fly Ash (FA) dosage for ASR mitigation

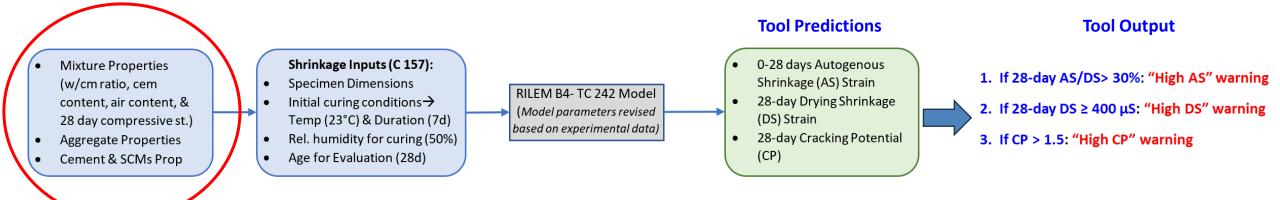

- ASTM C 114 mod. test to measure water-soluble alkali (WSA) from FA (~ 1-2 hrs./test) → 1 day
- Using the Non-Linear Regression model to predict WSA from FA \rightarrow *Instantly*

Step 2: Determine FA dosage by ASTM C 1567 (% Fly Ash \leq 0.10% Threshold Expansion) \rightarrow **14 Days**

Step 3: Comparative assessment between CST vs ASTM C1567 FA Dosage

- If the dosage difference is > 5% (e.g., 6-10%) → ACCT (AASHTO TP 142) validation is mandatory
- If the dosage difference is < 5% (e.g., between 2-5%) → use CST-based replacement level → ACCT(AASHTO TP 142) validation can be considered optional

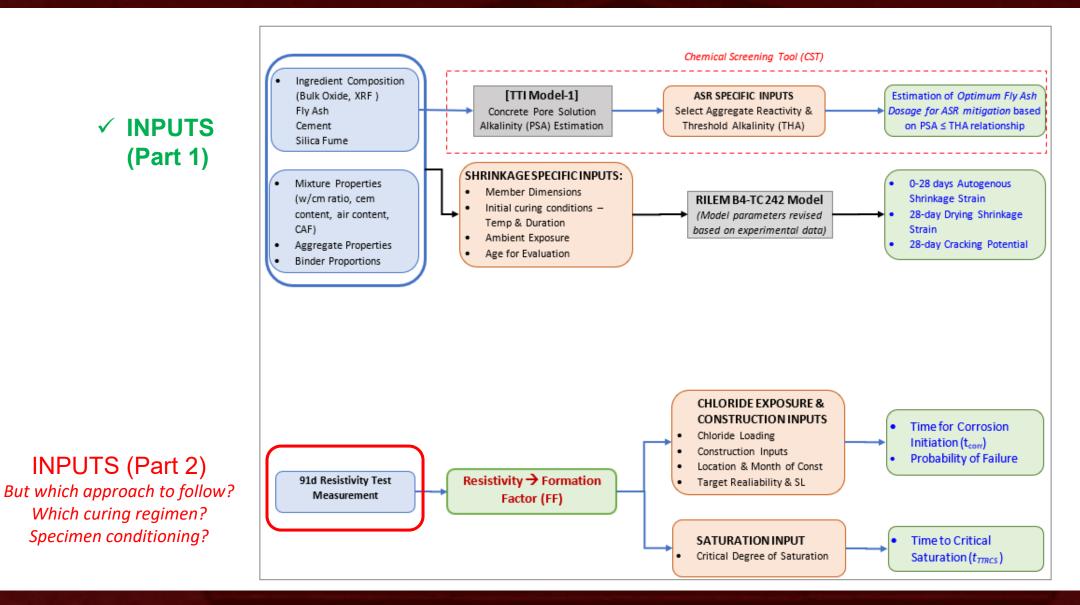
Accelerated Concrete Cylinder Test (ACCT) [AAASHTO TP142] ASR Test Method Developed at TTI

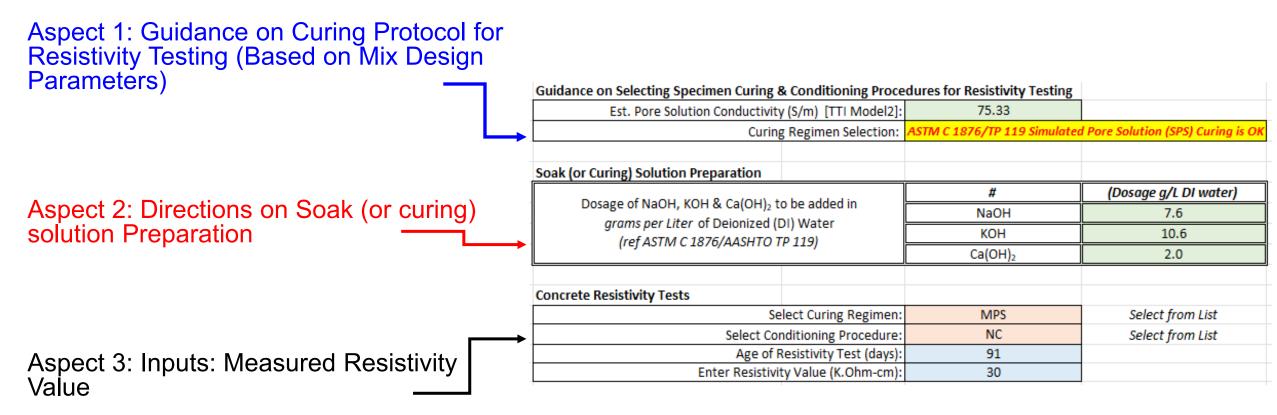


• Mukhopadhyay AK, Liu Kai-Wei and Jalal M.," An innovative approach of fly ash characterization and evaluation to prevent ASR, ACI Materials Journal, 2019, Vol. 116, Issue 4, 173-181.

 Liu, Kai-Wei and Mukhopadhyay, A. K., "Accelerated Concrete-Cylinder Test for Alkali–Silica Reaction," Journal of Testing and Evaluation (IF: 0.644) ASTM International, Vol. 44, No. 3, 2015, pp. 1–10.

TxDOT Tool Approach for Shrinkage Evaluation


- > Inbuilt RILEM B4 model for Autogenous & Drying Shrinkage prediction and Cracking Potential estimation of HPC Mixes
 - Replaces laborious and time-consuming laboratory tests


Mix Design Inputs

		EVAL	Parameter	Recommended Performance (& Limit)		Cracking Potential (CP)	Potential for Cracking
1		dation Shrinkage (AS)		≤ 30%		CP > 1.5	High
1.	Autogenous Shrinkage (AS) Evaluation \rightarrow sealed concrete	Drisms, mo Drying Shrinkage	28-Day DS	C 1698 (ONIY J ≤ 400	or se	1.25 < CP ≤ 1.5	Moderate-High
2.	Drying Shrinkage Evaluation (7-28 days) →ASTM C 157	(DS)	28-Day DS	microstrains		1 < CP ≤ 1.25	Moderate-Low
3.	Cracking Potential Estimation	Cracking Potential	CP based on	Low or Moderate-Low			
	• Based on measured tensile strength, MOE and 28-days AS a	nd D\$, and e	stimated c	reep (sin + buvilt mo	del).		Low

TxDOT Tool Inputs (Part 2): Resistivity Tests

TxDOT Tool Inputs (Part 2): Resistivity Tests

- > Type → Bulk / Surface Resistivity Tests
- > Curing \rightarrow SE, LW, SPS or MPS
- > Conditioning \rightarrow NC (91d OR 180 d), AC

Aspect 1: Guidance on Curing Protocol for Resistivity Testing

Why Is Appropriate Curing Regimen Selection Important?

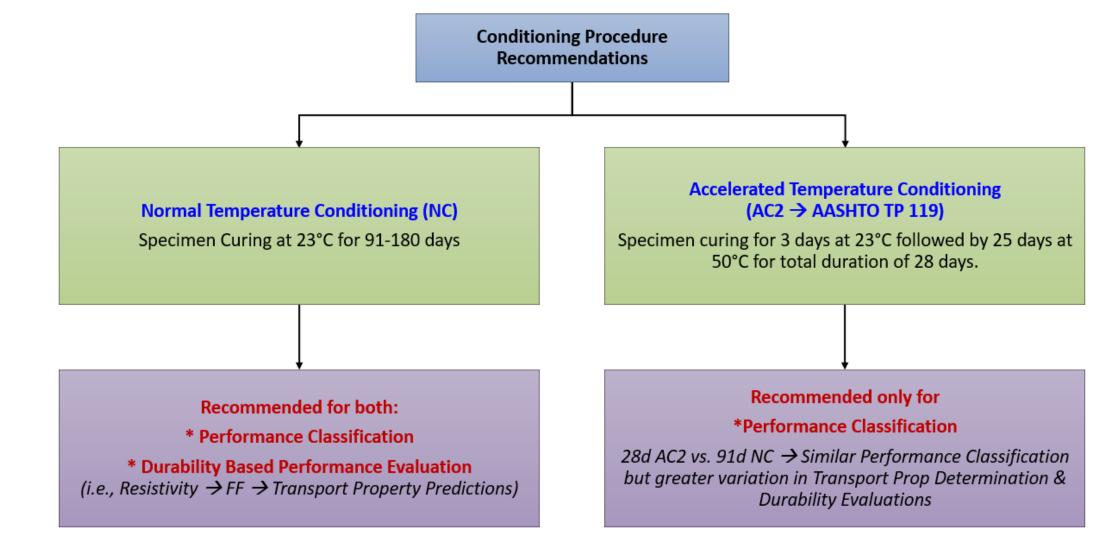
PSC of HPC Mixtures vs. Curing Solution Conductivity

Pore Solution Conductivity (PSC) of HPC Mixes vs. Curing Solution Conductivity (CSC) Resistivity → Formation Factor 140 ASTM C 1876 (SPS, all) Group 3 (MPS) Simulated Pore Solution Curing Group 2 (MPS) Group 1 (MPS) 108 mS/cm 78.74 mS/cm 68.23 mS/cm 80.64 mS/cm 120 Estimated long term Pore Solution Conductivity (mS/m) 0 0 0 00 00 Conductivity (PSC) of Concrete Mix [TTI Model-2] NO YES **Check if PSC is** between 67 - 91 mS/cm 20 ASTM C 1876/ AASHTO TP 119 0 **Matching Pore Solution** 6SF 20F5SF CEN 25F 35F 35C 29C6SF 35C10SF Simulated (Standard) Pore (MPS) Curing Solution (SPS) Curing Group 1- OPC & bin SF Mix Group 2 - Class F FA Mixes Group 3 - Class C FA Mixes Avg. PSC ≈ ± 5% of SPS Avg PSC ≈ 10-20% lower than SPS Avg PSC ≈ 20-40% higher than SPS

TRR 2023 – "Increasing the Reliability of Formation Factor Based Transport Property Prediction for High-Performance Concrete (HPC) Mixtures Through Innovative Matching Pore Solution (MPS) Curing" (Saraswatula et al., 2023)

Guidelines developed during Task 7 HPC Project (0-6958)

TxDOT Tool: SPS vs MPS Curing Regimen Recommendations


CONCRETE RESIST				
Guidance on Curing Protocol for Resistivity Testing (Based	on Mix Parameters)			
Est. Pore Solution Conductivity (S/m) [TTI Mode	Est. Pore Solution Conductivity (S/m) [TTI Model2]: 70.03			
Curing Regimen Recommende	ed: ASTM C 1897/AASHTO TI	P 119 Curing is OK		
Soak (or Curing) Solution Preparation		(Dosage g/L DI water)		
Dosage of NaOH, KOH & Ca(OH) ₂ to be added in	NaOH	7.6		
	КОН	10.6		
grams per Liter of Deionized Water:	Ca(OH) ₂	2.0		

SPS - 25% Class F Fly Ash Mix

	CONCRETE RESISTIV		
	Guidance on Curing Protocol for Resistivity Testing (Based or	Mix Parameters)	
	Est. Pore Solution Conductivity (S/m) [TTI Model2]	: 103.73	
MPS - 29% Class C Fly	Curing Regimen Recommended	MPS Curing Regimen	
Ash + 6% Silica Fume Mix	Soak (or Curing) Solution Preparation		(Dosage g/L DI water)
	Dosage of NaOH, KOH & Ca(OH) ₂ to be added in	NaOH	12.2
		КОН	12.1
	grams per Liter of Deionized Water:	Ca(OH) ₂	2.0

Aspect 3: Guidance on Conditioning Procedures for Resistivity Testing

What Is Guidance On Conditioning Procedure Selection?

Resistivity Measurements (Normal & Accelerated) vs Performance Classification

Resistivity Measurements – SPS Curing

Performance Classification (Measured Resistivity)- SPS Curing

Mix #ID	Normal Curi	Normal Curing (NC)		
	91 days	180 days	28 days	
CEM	15.8	18.0	16.0	
6SF	26.7	27.8	35.3	
25F	26.0	33.9	40.5	
20F5SF	39.3	46.2	62.2	
35F	32.0	44.1	66.4	
35C	28.0	32.1	41.6	
29C6SF	43.0	45.0	66.4	
35C10SF	50.0	53.0	94.7	

Mix #ID	Normal Cur	Normal Curing (NC)		
	91 days	180 days	28 days	
CEM	Moderate	Moderate	Moderate	
6SF	Low	Low	Low	
25F	Low	Low	Low	
20F5SF	Low-Very Low*	Very Low	Very Low	
35F	Low	Very Low	Very Low	
35C	Low	Low	Low	
29C6SF	Low-Very Low*	Very Low	Very Low	
35C10SF	Very Low	Very Low	Very Low	

Permeability Classification	Saturated Bulk Resistivity 4x8 Cylinder (kOhm.cm) AASHTO PEM	<i>Measured</i> Bulk Resistivity 4x8 Cylinder (kOhm.cm) @DOS=72% & n=2.2
High	<5.2	<11
Moderate	5.2 - 10.4	11 – 21
Low	10.4 – 20.8	21 - 43
Very Low	20.8 – 208	43 - 426
Negligible	>208	>426

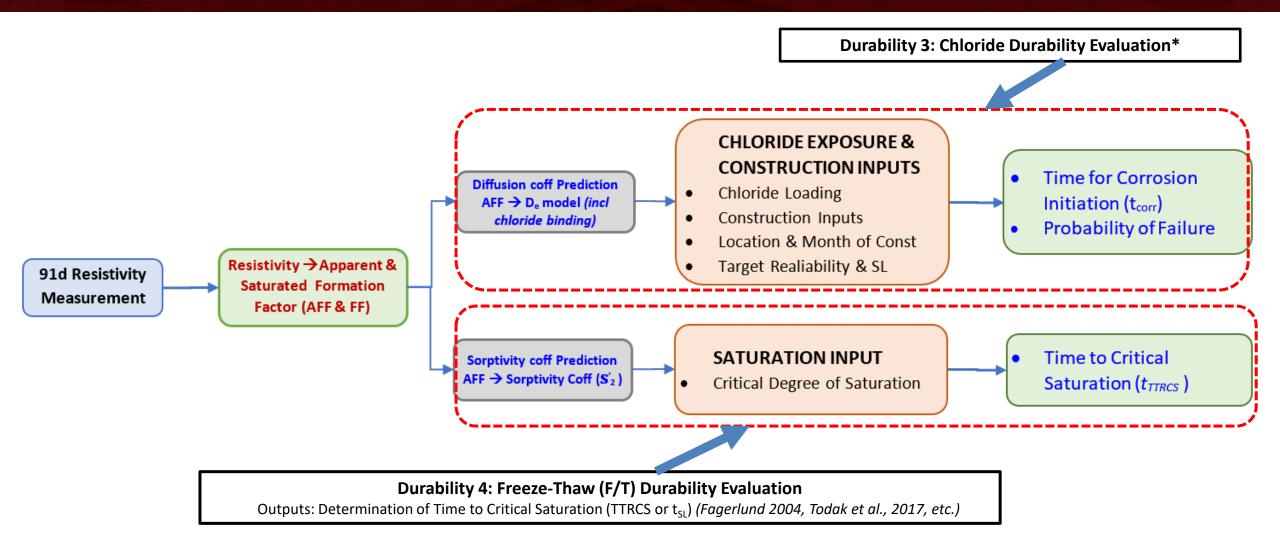
Resistivity – Curing Regimen (SPS & MPS) vs. FF Performance Classification Limits

SPS - 25% Class F Fly Ash Mix

MPS - 29% Class C Fly Ash + 6% Silica Fume Mix

Permeability Classification	Saturated Bulk Resistivity 4x8 Cylinder (kOhm.cm) AASHTO PEM	<i>Measured</i> Bulk Resistivity 4x8 Cylinder (kOhm.cm) @DOS=72% & n=2.2	Saturated Formation Factor (FF) 4x8 Cylinder AASHTO PEM	Apparent Formation Factor (AFF) 4x8 Cylinder @DOS=72% & n=2.2
High	<5.2	<11	<407	< 839
Moderate	5.2 - 10.4	11 – 21	407-815	839 - 1679
Low	10.4 - 20.8	21 - 43	815-1630	1679 - 3358
Very Low	20.8 - 208	43 - 426	1630-16299	3358 - 33576
Negligible	>208	>426	>16299	>33576

Permeability Classification	Saturated Bulk Resistivity 4x8 Cylinder (kOhm.cm) AASHTO PEM	<i>Measured</i> Bulk Resistivity 4x8 Cylinder (kOhm.cm) @DOS=72% & n=2.2	Saturated Formation Factor (FF) 4x8 Cylinder	Apparent Formation Factor (AFF) 4x8 Cylinder @DOS=72% & n=2.2
High	<5.2	<11	<534	<1099
Moderate	5.2 - 10.4	11 – 21	534 -1067	1099 - 2198
Low	10.4 - 20.8	21-43	1067 - 2134	2198 - 4396
Very Low	20.8 – 208	43 - 426	2134 - 21340	4396 - 43961
Negligible	>208	>426	>21340	> 43961


- TTI Model-2 $\rightarrow \rho^{SPS} = 0.127 \ Ohm. m$

- Formation factor =
$$\frac{\rho_{mea}}{\rho^{SPS}(=0.127 \text{ Ohm.m})}$$

> TTI Model-2 $\rightarrow \rho^{MPS} = 0.097 \ Ohm. m$

> Formation factor =
$$\frac{\rho_{mea}}{\rho^{MPS}(=0.098 \text{ Ohm.m})}$$

TxDOT Tool Approach for Chloride & Freeze-Thaw (F/T) Durability Evaluation

*TRR Publication "Increasing the Reliability of Formation Factor Based Transport Property Prediction for High Performance Concrete (HPC) Mixtures Through Innovative Matching Pore Solution (MPS) Curing" (Saraswatula et al., 2023)

TxDOT Tool Inputs (Part 3) – Durability Specific: Chloride Induced Rebar Corrosion

> Chloride Durability Specific Inputs

- Location & Month of Construction : Monthly ambient (mean) temperatures in-built from historical NOAA database for 18 regions in Texas and for Jan – Dec
 - → Panhandle Plains → Amarillo & Lubbock
 - → Big Bend Country → El Paso, Del Rio, Guadalupe & Big Bend
 - → South Texas Plains → San Antonio & McAllen
 - → Hill Country → Austin
 - → **Prairies** → College Station & Dallas
 - → Piney Woods → Texarkana, Lufkin & Tyler
 - → **Gulf Coast** → Beaumont, Corpus Christi, Galveston & Houston

DURABILITY TO RESIST CHLORIDE INGRESS				
Location (In Texas):	Amarillo	Select from List		
Month of Construction:	July	Select from List		
Max Surface Chloride Concentration (Cs, %):	0.6%	Select from List		
Rebar depth (Conc Cover, inches):	2.5			
Rebar Type:	Epoxy Coated	Select from List		
Corrosion Inhibitor Dosage (gal/CY):	2	Select from List		
Design Service Life (yrs):	75			
Target Reliability Index (beta,β):	1.3			

Environmental Chloride Loading: Surface chloride concentration (Cs)

- > Guidance Provided based on ConcreteWorks
- 3. Construction Inputs: Concrete Cover, Rebar Type & CNI Dosage
 - > Ct (Chloride Threshold values inbuilt based on ConcreteWorks)
- 4. Design service Life & Target Reliability Index

	, +	
Exposure condition	Maximum surface	Build-up rate
Exposure condition	concentration (%)	constant
Splash zone	0.8	Instantaneous
Spray zone	1	0.15
Within 0.5 miles of	0.6	0.06
ocean	0.0	0.00
Within 1 mile of ocean	0.6	0.03

TxDOT Tool: Generating OUTPUTS

Output: 1 Page Summary Report of HPC Mix Evaluation

- 1. After entering all inputs \rightarrow "Run Analysis"
- Need pdf file of Report ? → "Generate Summary Report"

CLICK THE BUTTON TO> RUN ANALYSIS	RUN ANALYSIS
CLICK THE BUTTON TO> GENERATE SUMMARY REPORT (Note: Please close all pdf files before clicking the button)	GENERATE SUMMARY REPORT

		SUMMA	RY REPORT C	DF H	PC MIX EVALUA	ATION			
		Class of C	Concrete			Class S H	IPC		
	Desi	gn Strength, M	Vin 28-day (j	psi)		4000			
Mix Design		Design w/	cm ratio			0.42			
Parameters	Total	Cementitious	Content (lbs	s/C)	0	494			
		Air Co	ntent			5.50%	6		
	Co	arse Aggregat	te Factor (CA	F)		0.71			
		Cement Co				75%			
Binder		Fly Ash Co				25%			
Composition	Fly A	sh Class based		618	3	F			
		Silica Fume (Content (%)	_		0%			
	то	OL INPUTS			TOOL OUTPUTS				
	Aggregate Reacti	R2		% SCM Replacement - Chemical Screening Tool Predict					
ASR Durability	Aggregate Threshol (THA,N)	0.34		Based on Concrete pore solution alkalinity (PSA) ≤ Aggregate THA					
Durubinty	Threshold Aggrega (TAL, Ib/c	-	3.05		-				
	Initial Curing Tir	ne (days):	7		Autogenous	s Shrinkage (μS)	-41.5E-6	Low	
Shrinkage	Curing Tempera	ture [°C]:	23		Total sh	irinkage (μS)	-246.8E-6	Low	
Evaluation	Relative humidity (a	at curing) %:	50%		Strain Ratio	(AS/DS-28 day)	17%		
	Curing Duration	n (days):	28		Crackir	ng Potential	0.86	Low	
	Curing Type		SPS		Permeability Classification (Value & Clas		ass)		
Resistivity &	Conditioning R	AC2		Resistivity (Mea), k.Ohm-cm 18.8 M			Moderate		
Fornation	Age of Resistivity	Test (days)	28		Resistivity (Sat), kOhm-cm 14			Low	
Factor	Measured (avg.)	esistivity	18.8		Apparent Fo	rmation Factor	1480	Moderate	
	(Kohm.cn	1)	10.0		Saturated Fo	ormation Factor	1137	Low	

OUTPUT SHEET

Case Study 1 & 2:

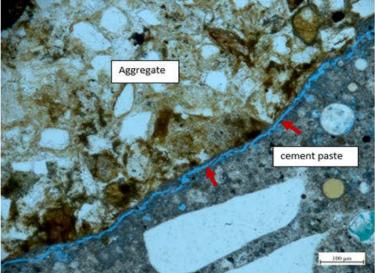
TxDOT Tool Predictions vs. Laboratory Measurements for Class F & Class C Fly Ash Mixtures

Case Study 1: Bridge Deck Concrete with 29% C Ash+ 6% SF - Amarillo, TX TxDOT Tool Predictions vs. Laboratory Measurements

#MIX	#TYPE	SHR	INKAGE	RESISTIVITY & FORMATION FACTOR		CTOR	CHLORIDE DURABILITY*					F/T DURABILITY	
		Autogenous/ Drying Shr (AS/DS)	Cracking Potential (CP)	Measured Resistivity (p _{mea})	Saturated Resistivity (p _{sat})	Apparent Formation Factor (AFF)	Saturated Formation Factor (FF)	Chloride Binding Factor (Cb)	Effective Diffusion Coff (De)	Est. Time to Rebar Corrosion (t _{corr})	Prob of Failure & Reliability (P_f)	Pass or Fail	Time to critical saturation (t_{sl})
29% C ash	Tool Predicted	35%	Moderate-High (1.32)	30 (L)	20 (L)	3068 (L)	2058 (VL)	1.72	2.50E-12	>75 years	8% (1.42)	Pass	47
+ 6% SF HPC Mix	Lab Measured	34%	Moderate-High (1.40)	30 (L)	19.9 (L)	3186 (L)	2146 (VL)	1.64	2.00E-12				48

*Note: Chloride Durability Evaluation -> Bridge Deck in Amarillo, TX; surface chloride conc (Cs)- 0.6%; Reported use of Epoxy coated steel w/ 2 Gal/yd3 CNI ; July (high ambient temp)


Observations for 29% C Ash + 6% SF Mix:


- 1. ASR Evaluation: Adequate to mitigate ASR, the difference between CST & C1567 is <5%, no need for ACCT validation
- 2. Mix Satisfies ASR, Chloride & F/T durability;
- 3. Shrinkage \rightarrow predicted CP is moderate-high due to the addition of 6% SF & low w/cm ratio (0.40) selecting the right placement time (i.e., evening or

night-time) and good curing practice is very important to eliminate early-age cracking potential

Case Study 1: Bridge Deck Concrete with 29% C Ash+ 6% SF - Amarillo, TX TxDOT Tool Predictions vs. Field Observations

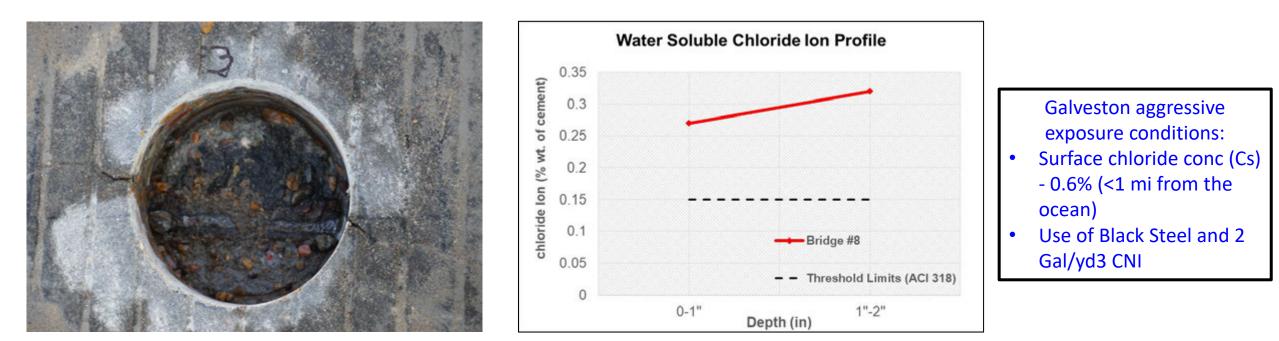
LAB STUDY L	JSING HPC BRIDGE DECK N	1IXES	Field Evaluation of Bridge Deck \rightarrow Amarillo, TX:
Shrinkage	Transport Properties @ early ages (within 28 days)	Durability Performance	 Low w/cm ratio (truck tickets ~0.38-0.4) → High autogenous
Drying shrinkage: (≤ 400 μs, 28d) High Autogenous shr – increased cracking potential	Dense microstructure development & permeability reduction <i>at early ages</i>	Good - early and later ages	 shrinkage strain (TxDOT Tool) Early morning concrete placement (truck tickets, 4-7 am) → "mod-very high" cracking probability (ConcreteWorks) Overall: Increased potential for early age crack formation → Verified from field observations

Case Study 2: Bridge Deck concrete with 25% F Ash - Galveston, TX TxDOT Tool Predictions vs. Laboratory Measurements

#Mix	#Туре	SHRI	INKAGE	RESI	RESISTIVITY & FORMATION FACTOR				CHLORIDE DURABILITY				F/T DURABILITY
		Autogenous/ Drying Shr (AS/DS)	Cracking Potential (CP)	Measured Resistivity (pmea)	Saturated Resistivity (p _{sat})	Apparent Formation Factor (AFF)	Saturated Formation Factor (FF)	Chloride Binding Factor (Cb)	Effective Diffusion Coff (De)	Est. Time to Rebar Corrosion (t _{corr})	Prob of Failure & Reliability (P_f)	Pass or Fail	Time to critical saturation (t_{sl})
25% F Ash .	Tool Predicted	17%	Low (0.99)	28.2 (L)	17 (L)	2039 (L)	1213 (L)	1.69	3.7E-12	>75 years	17% (0.94)	Fail	19
HPC Mix	Lab Measured	20%	Low (0.87)	28.2 (L)	19 (L)	1974 (L)	1329 (L)	1.71	2.9E-12				27

*Note: Chloride Durability Eval \rightarrow surface chloride conc (Cs) - 0.6% (<1 mi from the ocean); Reported use of Black Steel & 2 Gal/yd3 CNI; July (high ambient temp)

25% F ash Mix (Observations)


ASR Evaluation: CST predicted 25% F ash is adequate to mitigate ASR; the difference between CST & C1567 is <5%, no need for ACCT validation

OK

- Cracking potential: Low
- Chloride durability: Fail
- F-T durability: not adequate but not required

Case Study 2: Bridge Deck concrete with 25% F Ash - Galveston, TX TxDOT Tool Predictions vs. Field Observations

LAB STUDY USING HPC BRIDGE DECK MIXES					
Shrinkage	Transport Properties @ early ages (within 28 days)	Durability Performance			
Autogenous Shrinkage - Iow Drying Shrinkage– Iow (320-350) Cracking potential - Iow	Poor - slower microstructure development – no or negligible reduction in permeability	Poor at early ages but improvement at later ages			

Evaluation Using TxDOT Tool: Current Galveston Mix (Case Study 2, not Qualified as HPC), Better Steel Selection is Required (Option 1)

	Initial Curing Time (days):	7	Autogenous Shrinkage (µS) -48.7E-6	Low
Shrinkage	Curing Temperature [°C]:	23	Total shrinkage (µS) -291.8E-6	Low
Evaluation	Relative humidity (at curing) %:	50%	Strain Ratio (AS/DS-28 day) 17%	
	Curing Duration (days):	28	Cracking Potential 0.99	Low
	Curing Type	MPS	Permeability Classification (Value & Cl	lass)
Resistivity &	Conditioning Regimen	NC	Resistivity (Mea), k.Ohm-cm 28.2	Low
Fornation	Age of Resistivity Test (days)	91	Resistivity (Sat), kOhm-cm 17	Low
Factor	Measured (avg.) Resistivity	28.2	Apparent Formation Factor 2222	Low
	(Kohm.cm)	20.2	Saturated Formation Factor 1322	Low
	Max Surface Cl Conc (Cs)	0.60%		
	Rebar depth (Cover, in)	2.50	Chloride Binding Factor	1.69
Chloride	Rebar Type	Black Steel	Eff Diffusion Coff (m2/s)	3.4E-12
Exposure & Rebar	Corrosion Inhibitor (gal/CY)	2.00	Est. Time to Corr Repair, yrs	>75 years
Corrosion	Location (In Texas)	Galveston	Probability of Failure (SHRP Model)	15%
	Month of Construction	July	Reliability Index Calculated	1.02
	Target Realibility Index	1.3	Pass or Fail? (Reliability -Calc vs Target)	Fails
F/T Service Life	Critical Degree of Saturation (DOScr %):	86%	Time to Critical Saturation (TTRCS) yrs	19

Case A: 25% Class F Fly Ash Mix with Black steel with 3 gal/cu yd. CNI

- Chloride Durability evaluated for Ferry Landing Bridge Deck, Galveston, TX; Month – July (high ambient temperatures)
- Chloride durability Fails

	INPUTS		OUTPUTS				
	Initial Curing Time (days):	7	Autogenous Shrinkage (µS) -48.7E-6	Low			
Shrinkage	Curing Temperature [°C]:	23	Total shrinkage (μS) -291.8E-6	Low			
Evaluation	Relative humidity (at curing) %:	50%	Strain Ratio (AS/DS-28 day) 17%				
	Curing Duration (days):	28	Cracking Potential 0.99	Low			
	Curing Type	MPS	Permeability Classification (Value & Cl	ass)			
Resistivity &	Conditioning Regimen	NC	Resistivity (Mea), k.Ohm-cm 28.2	Low			
Fornation	Age of Resistivity Test (days)	91	Resistivity (Sat), kOhm-cm 17	Low			
Factor	Measured (avg.) Resistivity	28.2	Apparent Formation Factor 2222	Low			
	(Kohm.cm)	20.2	Saturated Formation Factor 1322	Low			
	Max Surface Cl Conc (Cs)	0.60%					
	Rebar depth (Cover, in)	2.50	Chloride Binding Factor	1.69			
Chloride	Rebar Type	Epoxy Coated	Eff Diffusion Coff (m2/s)	3.4E-12			
Exposure & Rebar	Corrosion Inhibitor (gal/CY)	3.00	Est. Time to Corr Repair, yrs	>75 years			
Corrosion	Location (In Texas)	Galveston	Probability of Failure (SHRP Model)	7%			
	Month of Construction	July	Reliability Index Calculated	1.465			
	Target Realibility Index	1.3	Pass or Fail? (Reliability -Calc vs Target)	Passes			
F/T Service Life	Critical Degree of Saturation (DOScr %):	86%	Time to Critical Saturation (TTRCS) yrs	19			

- Case B: 25% Class F Fly Ash Mix with Epoxy coated steel with 3 gal/cu yd. CNI
- Chloride durability passes but reliability is marginally above 1.3 target.

Evaluation Using TxDOT Tool: The current Galveston Mix is not Qualified as HPC, Use of a Ternary Mix (20% Class F + 5% SF) Can Make it HPC (Option 2)

	INPUTS		OUTPUTS	
	Initial Curing Time (days):	7	Autogenous Shrinkage (µS) -48.7E-6	Low
Shrinkage	Curing Temperature [°C]:	23	Total shrinkage (µS) -291.8E-6	Low
Evaluation	Relative humidity (at curing) %:	50%	Strain Ratio (AS/DS-28 day) 17%	
	Curing Duration (days):	28	Cracking Potential 0.99	Low
	Curing Type	MPS	Permeability Classification (Value & Cl	ass)
Resistivity &	Conditioning Regimen	NC	Resistivity (Mea), k.Ohm-cm 28.2	Low
Fornation	Age of Resistivity Test (days)	91	Resistivity (Sat), kOhm-cm 17	Low
Factor	Measured (avg.) Resistivity	28.2	Apparent Formation Factor 2222	Low
	(Kohm.cm)	20.2	Saturated Formation Factor 1322	Low
	Max Surface Cl Conc (Cs)	0.60%		
	Rebar depth (Cover, in)	2.50	Chloride Binding Factor	1.69
Chloride	Rebar Type	Epoxy Coated	Eff Diffusion Coff (m2/s)	3.4E-12
Exposure & Rebar	Corrosion Inhibitor (gal/CY)	3.00	Est. Time to Corr Repair, yrs	>75 years
Corrosion	Location (In Texas)	Galveston	Probability of Failure (SHRP Model)	7%
	Month of Construction	July	Reliability Index Calculated	1.465
	Target Realibility Index	1.3	Pass or Fail? (Reliability -Calc vs Target)	Passes
F/T Service Life	Critical Degree of Saturation (DOScr %):	86%	Time to Critical Saturation (TTRCS) yrs	19

Case A: 25% Class F Fly Ash Mix with Epoxy coated steel with 3 gal/cu yd. CNI

Chloride durability passes but reliability is marginally above 1.3 target.

	INPUTS		OUTPUTS
	Initial Curing Time (days):	7	Autogenous Shrinkage (µS) -85.4E-6 High
Shrinkage	Curing Temperature [°C]:	23	Total shrinkage (µS) -271.9E-6 Low
Evaluation	Relative humidity (at curing) %:	50%	Strain Ratio (AS/DS-28 day) 31%
	Curing Duration (days):	28	Cracking Potential 1.11 Moderate
	Curing Type	MPS	Permeability Classification (Value & Class)
Resistivity &	Conditioning Regimen	NC	Resistivity (Mea), k.Ohm-cm 37 Low
Fornation	Age of Resistivity Test (days)	91	Resistivity (Sat), kOhm-cm 23 Very Low
Factor	Measured (avg.) Resistivity	27	Apparent Formation Factor 2252 Low
	(Kohm.cm)	37	Saturated Formation Factor 1379 Low
	Max Surface Cl Conc (Cs)	0.60%	
	Rebar depth (Cover, in)	2.50	Chloride Binding Factor 1.60
Chloride	Rebar Type	Black Steel	Eff Diffusion Coff (m2/s) 3.5E-12
Exposure & Rebar	Corrosion Inhibitor (gal/CY)	2.00	Est. Time to Corr Repair, yrs >75 years
Corrosion	Location (In Texas)	Galveston	Probability of Failure (SHRP Model) 3%
	Month of Construction	July	Reliability Index Calculated 1.95
	Target Realibility Index	1.3	Pass or Fail? (Reliability -Calc vs Target) Passes
F/T Service Life	Critical Degree of Saturation (DOScr %):	86%	Time to Critical Saturation (TTRCS) yrs 19

- Case C: Use of Mix option 3 → 20% Class F Fly Ash + 5% SF with Black Steel
- > Chloride durability passes with Black steel + 2 Gal/yd3 CNI
- → But the use of SF → moderate cracking potential due to high autogenous shrinkage (selecting the right placement time and good curing practice is highly recommended

TxDOT Tool Reach TRL 8

Successfully validated through two field project evaluation

- Based on evaluating one mix, the resistivity test methods have satisfied the within-the-lab and between-the-lab repeatability requirements.
 - However, various representative mix designs need to be evaluated to establish acceptable within-the-lab and between-the-lab repeatability requirements.

Future Work: Implementation

Our plan to achieve TRL 9

- 1. Apply the TxDOT tool to evaluate current mix design practices for several field projects and examine if the current mix designs qualify as HPC matching with the durability requirements.
- 2. Initial studies indicate that 28-day resistivity measurements with accelerated conditioning (AC) are acceptable for assigning performance classification categories (e.g., low, very low, etc.).
 - Extensive validation with numerous field projects (Item 1) is essential to confirm

3. Based on several project evaluations

- 1. Establishing a connection between classification category and performance prediction/evaluation
- 2. Develop guidelines on classification categories (very low, low, medium, etc.) vs geographic locations one can select a particular class for bridges under a particular geographic location.
- 3. In the future, TxDOT can use resistivity (28 days with AC) or formation factor-based performance classification category to verify if the selected mix is qualified as HPC for a project and avoid conducting long-term performance testing.

ANY QUESTIONS ?

Anol K. Mukhopadhyay, Ph.D., P.G., (a-mukhopadhyay@tti.tamu.edu)

Pravin Saraswatula, Ph.D., E.I.T. (spravin112@tamu.edu)