Lime Treatment For Expansive Soils

Presented by Dale A. Rand, P.E. Executive Director Lime Association of Texas

Benefits of Soil Stabilization with Lime

- Eliminates excavation & disposal costs
- Provides a stable & uniform layer or paving structure
- Decreases expansion/swelling
- Improves foundation support
- Achieves long term strength & performance

Subgrade Moduli

Moduli ≈ 500 ksi

Moduli ≈ 50 ksi

Subbase Optional (Usually Treated Subgrade)

Moduli ≈ 30-50 ksi

Raw Subgrade

Moduli ≈ 10 ksi

Problems Associated with Clay Soils

- Typically moisture sensitive
 expansion potential & swell pressure
 Exhibit poor pavement support
 low modulus, R-values, CBRs, & Unconfined compressive strengths
 Constructability problems
 - highly plastic poor workability
 - hard to compact
 - yield or pump when wet

Structure of Clay Minerals

Kaolinite: Hexagonal crystals Size: 0.2 - 2 μm Surface Area: 10 - 30 m²/g [Magn: 2000 x]

Montmorillonite: Flakes Size: 0.01 - 1 μm Surface Area: 650 - 800 m²/g [Magn: 20000 x]

Layers of Silica & Alumina

The Lime Cycle

CaO Quicklime

Ca(OH)₂ Hydrated Lime

CaCO₃ Limestone

The System: Clay - Water - Calcium

Negatively charged clay surface attracts cations (+) & water molecules (dipole), causing formation of a 'double diffused water layer'

Calcium cations (++) replace water and lessens ions so soil becomes more workable

Clay Surface

Tex-121-E Part III

Tex-121-E Part III

% Lime Added

Rapid Change in Soil Texture

Lime - Soil Reactions (1):

Immediate Reactions (within hours)

- ▶ Reduction in Water Content chemical reaction (CaO + H₂O → Ca(OH)₂ + heat)* and mixing effect *: not for Hydrated Lime
- Flocculation / Agglomeration of Clay particles textural change leads to decrease in PI & increase in workability

Lime Stabilization Process

Hydrated lime (Ca(OH)₂ → high pH) + water (H₂O) + Clay (Silica & Alumina dissolve) = Cementitious material (CSH & CAH)

Natural Clay

Pozzolanic Reaction Increases Bonds by Formation of Crystals Lime-Soil Reactions

- > Cation exchange
- Flocculation/agglomeration
- Pozzolanic reaction
- Carbonation

Pozzolanic Reaction (2):

Influence of pH on solubility of Silica and Alumina: In the high pH-environment provided by Lime (when saturated, pH = 12.4), Clay-silica and -alumina become available for the pozzolanic reaction: $Ca^{2^+} + OH^- + SiO_{2 (soluble)} \rightarrow CSH$ $Ca^{2^+} + OH^- + Al_2O_{3 (soluble)} \rightarrow CAH$

The pozzolanic reaction will continue as long as a high pH is maintained and Ca²⁺-lons are available.

Treatment Guidelines for Soils and Base in Pavement Structures

Materials & Tests Division Soils & Aggregates Section

August 2019

TxDOT Guidelines for Soil Treatment

Common Additives for Soil Stabilization

Cement in Lieu of Lime?

- Cement often promoted in the soils market as a calciumbased stabilizer that does the same thing Lime can do
 - Faster, higher strength, no mellowing, open roadway to traffic the same day
- Cement has about half the available CaO compared to Lime and more importantly it reacts differently than Lime
- In high PI clay, Cement is not equivalent or interchangeable with Lime since it does not complete the pozzolanic reaction that will permanently change the structure of clay. With Cement, the clay particle is not consumed, it is encapsulated
- Cement sets up rapidly (3 hours), and does not have the time nor the available calcium to achieve what lime does to highly plastic clay on a one-to-one basis

Calcium Diffusion into Clay - 365 Days

Lime treated, 5mm

Cement treated, 4mm

Contact Information

Dale A. Rand Executive Director

Lime Association of Texas 114 Roanoak Dr. Dripping Springs, Texas 78620

Phone: (512) 771-3667 Email: <u>dalerand@limetexas.org</u>

Website: www.limetexas.org

The materials and information contained herein are for general guidance and reference purposes only for professionals competent to evaluate the significance and limitations of their content. The materials and information do not constitute a standard, specification, or regulation. Third party materials reflect the views of the authors, who are responsible for the accuracy of the facts, data, ophions, findings, and conclusions presented therein. The contents do not necessarily reflect the official views or policies of the Lime Association of Texas.