Use of High Performance-Graded (HPG) Binders in Texas

Amit Bhasin (CTR, UT Austin), Pravat Karki (MTD, TxDOT)

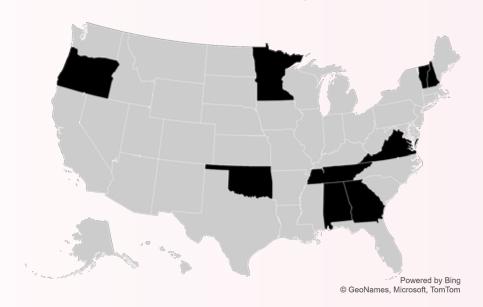
- What is HPG?
- Why use HPG?
- HPG binders in TX
- HPG test sections in TX
- Workability of HPG
- HPG binder properties
- HPG mixture properties

- What is HPG?
- Why use HPG?
- HPG binders in TX
- HPG test sections in TX
- Workability of HPG
- HPG binder properties
- HPG mixture properties

A modified binder but with much higher concentration of polymer or modifier compared to typical modified binders.

- What is HPG?
- Why use HPG?
- HPG binders in TX
- HPG test sections in TX
- Workability of HPG
- HPG binder properties
- HPG mixture properties

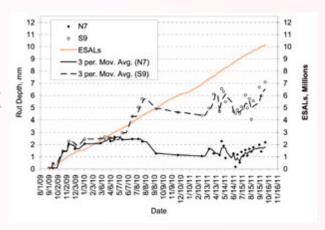
Typically to:


- improve performance for the same structure,
 - and/or
- reduce layer thickness to achieve similar performance.

- What is HPG?
- Why use HPG?
- HPG binders in TX
- HPG test sections in TX
- Workability of HPG
- HPG binder properties
- HPG mixture properties

Mulitple sections across US have shown positive results with the use of binders with higher polymer content

Ref.:


Habbouche, J., Hajj, E.Y., Sebaaly, P.E. and Piratheepan, M., 2020. A critical review of high polymer-modified asphalt binders and mixtures. *International Journal of Pavement Engineering*, 21(6), pp.686-702.



- What is HPG?
- Why use HPG?
- HPG binders in TX
- HPG test sections in TX
- Workability of HPG
- HPG binder properties
- HPG mixture properties

Example: NCAT – reduced thickness from 7" to 5.75"

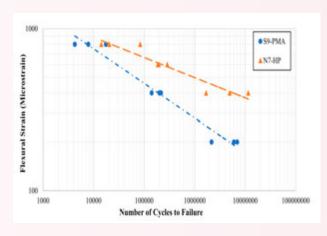
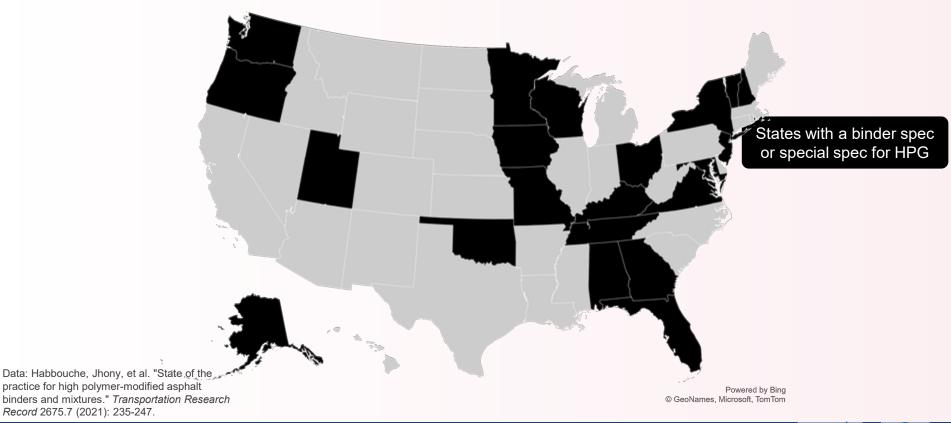


Fig. 2. Estimated Life until Failure

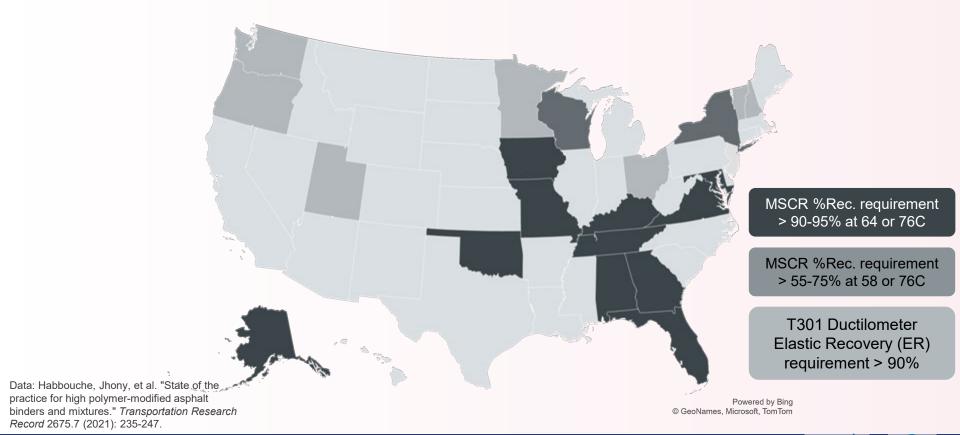
Refs.:

Timm, D.H., Robbins, M.M., Willis, J.R., Tran, N. and Taylor, A.J., 2013. Field and laboratory study of high-polymer mixtures at the NCAT test track. *Final report*, pp.13-03.

Habbouche, J., Hajj, E.Y., Sebaaly, P.E. and Piratheepan, M., 2020. A critical review of high polymer-modified asphalt binders and mixtures. *International Journal of Pavement Engineering*, 21(6), pp.686-702.


HPG Binders in Texas

- What is HPG?
- Why use HPG?
- HPG binders in TX
- HPG test sections in TX
- Workability of HPG
- HPG binder properties
- HPG mixture properties



HPG Binders in other states

HPG Binders in other states

HPG Binders in TX

- TxDOT published Special Specification 3096-002 One-Time-Use (OTU) specification in Feb.
 2022 to allow the use of HPG in Austin district to address the impact of skyrocketing number of near-stopping traffic vehicles.
- TxDOT gathered experience from agencies and industry in Oklahoma, Florida and Virginia and shared relevant info with their counterparts in Texas.
- TxDOT asked asphalt binder suppliers to provide binders that meet SS3096-002 OTU spec. requirements (esp. MSCR %Rec. ≥ 90% and 7.5% SBS Polymer) or *their equivalents*. Several were identified as OTU compliant *or equivalent*.
- TxDOT started certifying binders that do meet SS3096-002 OTU spec. requirements from 2023, 2nd Quarter.

HPG Binders in TX

Special Provision to Special Spec. 3096: SS3096-002 (02/22)

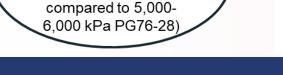
HPG = High Performance Grade

Typically a modified asphalt binder with higher polymer content

Higher viscosity allowance at 135C (5.0 Pa-s for HPG compared to 3.0 Pa-s for other PGs)

Stringent intermediate temperature

requirement at 25C


(4,000 kPa for HPG

nigh Performance-Graded (NPG) binder	
Test Method and Property	HPG
Original Binder	
Flash Point, AASHTO T 48, Min. °C	230
Viscosity, AASHTO T 316, Max. 5.0 Pa-s, test temperature, °C1	135
Polymer Separation, Tex-540-C, Max. %	4.0
Polymer Content, Tex-533-C2, Min. %	7.5
Rolling Thin-Film Oven (AASHTO T 240)	
Mass Change, AASHTO T 240, Max. %	1.0
Multiple Stress Creep Recovery, AASHTO T 350:	
Jnr, at 3.2 kPa, Max. 0.10 kPa ⁻¹ ,	76
% Recovery, at 3.2 kPa, Min. 90.0%,	/0
Test temperature, °C	
Pressure Aging Vessel (PAV) Residue (AASHTO R 28)	
PAV aging temperature, °C	100
Dynamic shear, AASHTO 315:	
G*sin(δ), Max. 4,000 kPa	25
Test temperature @ 10 rad/sec., °C	
Bending Beam, AASHTO T 3133:	
S @ 60 sec, Max. 300 MPa,	-18
m-value @ 60 sec, Min. 0.300,	-10
Test temperature, °C	

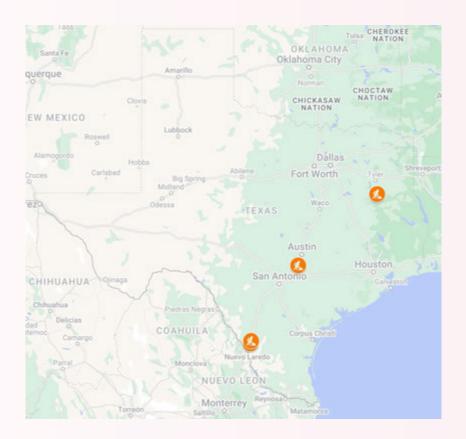
High Performance-Graded (HPG) Binder

Higher %Rec. requirement at 76C (90% for HPG compared to 60% for a PG76-28)

> A softer -28 low grade required

HPG Sections in Texas

- What is HPG?
- Why use HPG?
- HPG binders in TX
- HPG test sections in TX
- Workability of HPG
- HPG binder properties
- HPG mixture properties

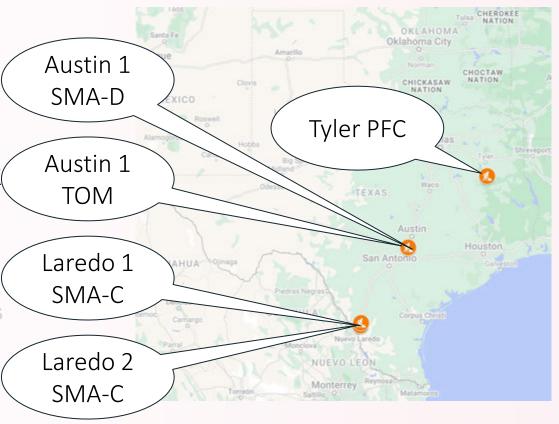

- TxDOT/MTD has been and will be reaching out to Districts that want to try both SS3096-002 compliant and alternative HPGs in SMA, PFC, TOM, Superpave, etc.
- TxDOT/MTD has asked CTR under an interagency contract to collect/test the materials (binders and mixtures), document the districts' experience from construction to performance, and provide recommendations.
- TxDOT/MTD and CTR are running SS3096-002 prescribed tests as well as some newer tests (such as Poker chip and 8 mm DSR) being developed under Item 300 research Project 0-7073.
- TxDOT/MTD will revise the HPG specification based on these experience and recommendation.

HPG Test Sections in Texas

- What is HPG?
- Why use HPG?
- HPG binders in TX
- HPG test sections in TX
- Workability of HPG
- HPG binder properties
- HPG mixture properties

HPG Test Sections in Texas

What is HPG?


Why use HPG?

HPG binders in TX

HPG test sections in TX

Workability of HPG

HPG binder properties

- What is HPG?
- Why use HPG?
- HPG binders in TX
- HPG test sections in TX
- Workability of HPG
- HPG binder properties
- HPG mixture properties

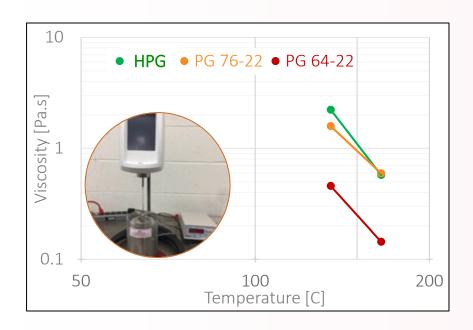


Fig. 1. Rotational Viscosity

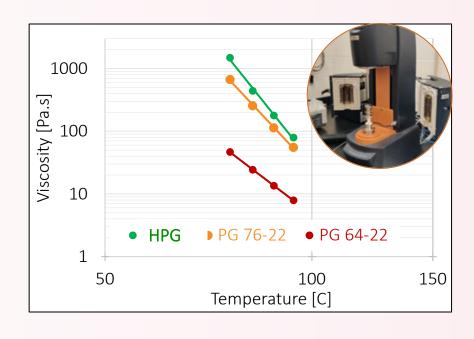


Fig. 2. DSR Viscosity

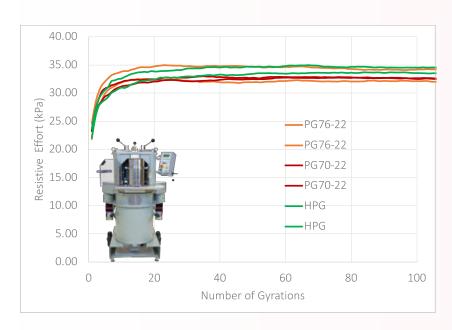


Fig. 1. PFC Workability

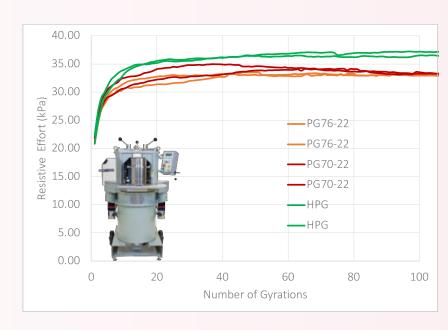


Fig. 2. SMA Workability

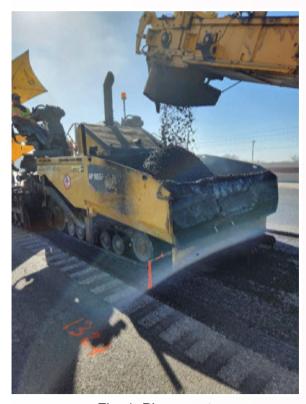


Fig. 2. Compaction

SMA Site 1:

- 3 inch SMA
- Windrow temperature = 320F
- No problem with laydown or compaction

Fig. 1. Placement

Fig. 2. Compaction

SMA Site 2:

- 3 inch SMA (mill and replace)
- Temperature started at 350 F and no issues with placement or compaction
- Some issues when temperature hit 305 F; construction delay caused some issues when temperature fell to 225F

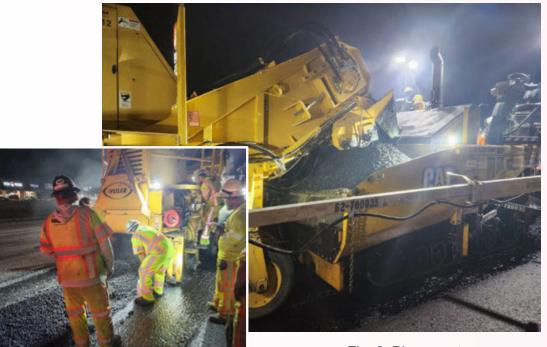
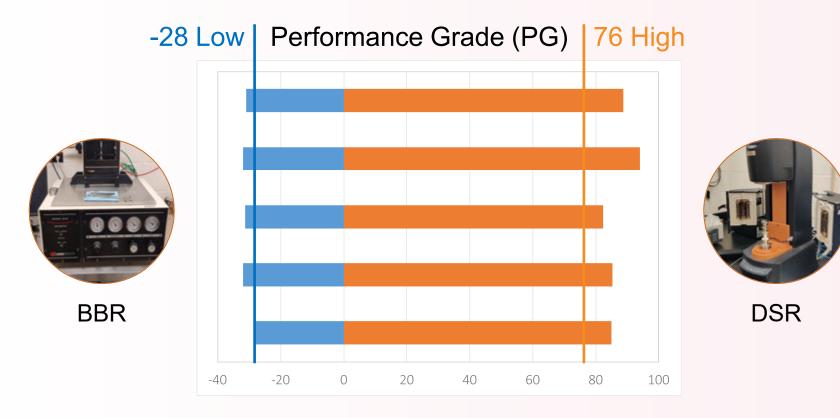


Fig. 2. Placement

SMA Site 3:

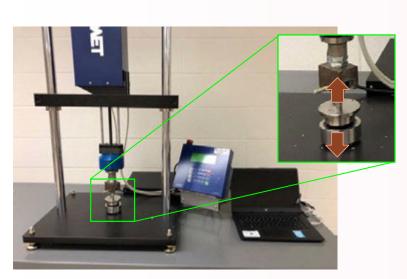
- 2 inch SMA (mill and replace)
- Initially temperature was 275 F and some pick up issues
- Successive mixes at 325 F went smoothly without any issues

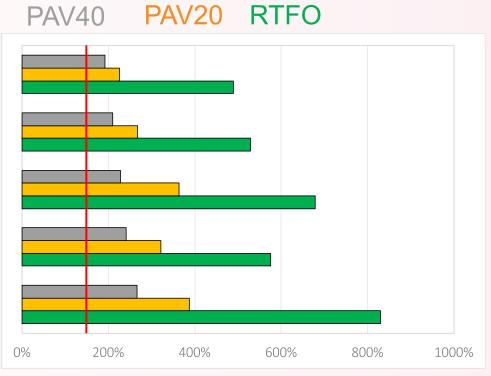

HPG Binder Properties

Performance Grade (PG)

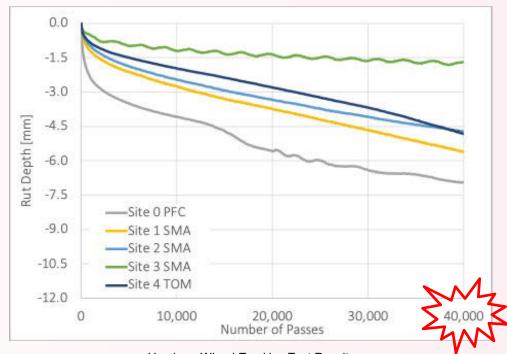
Poker Chip Ductility

- What is HPG?
- Why use HPG?
- HPG binders in TX
- HPG test sections in TX
- Workability of HPG
- HPG binder properties
- HPG mixture properties

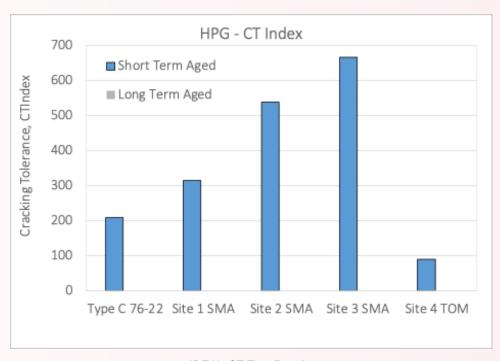



^{*} A binder substitution had to be made.

Poker Chip Instrument


- What is HPG?
- Why use HPG?
- HPG binders in TX
- HPG test sections in TX
- Workability of HPG
- HPG binder properties
- HPG mixture properties

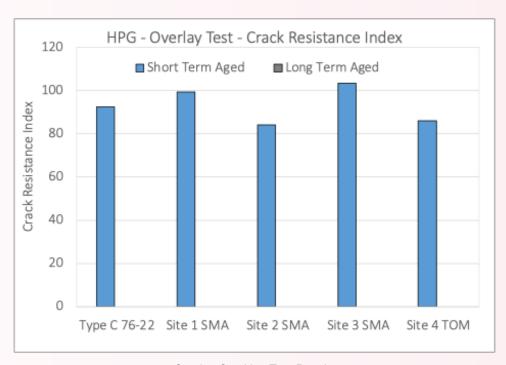
Hamburg Wheel-Tracking Test Setup


Hamburg Wheel-Tracking Test Results

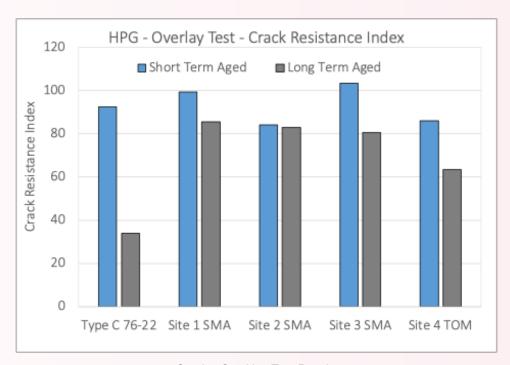
IDEAL-CT Test Setup

IDEAL-CT Test Results

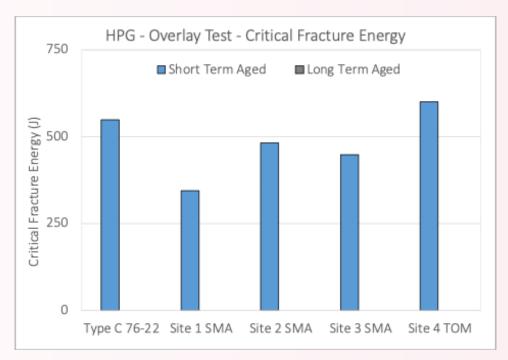
IDEAL-CT Test Setup


IDEAL-CT Test Results

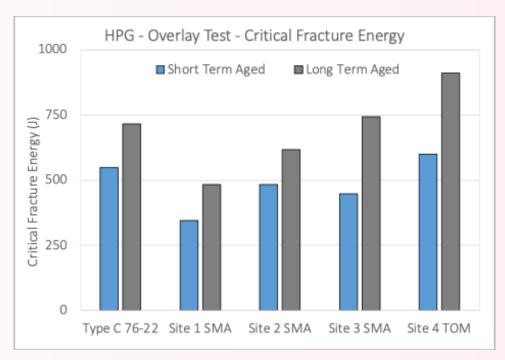
Overlay Cracking Test Setup


Overlay Cracking Test Results

Overlay Cracking Test Setup


Overlay Cracking Test Results

Overlay Cracking Test Setup


Overlay Cracking Test Results

Overlay Cracking Test Setup

Overlay Cracking Test Results

Next Steps

- Continue to monitor long-term performance.
- Continue to provide support to districts.
- Phase 2 lab study → constant mix design + HPG with different modifiers

Acknowledgements

MTD, TxDOT
 Ryan Barborak, Enad Mahmoud, Travis Patton, Melissa Benavides

- Tyler, Laredo, and Austin Districts, TxDOT
 Bryan Lutz, Chad Brown, Luis Castillo, Antonio Reyna, Mark Baumann
- CTR, UT Austin
 Darren Hazlett, Angelo Filonzi, Tyler Seay, David Chen, Satyavati Komaragiri

Questions

Contact:

TxDOT / MTD

MTD-Asphalt-Engineering@txdot.gov

CTR / UT Austin bhasin@utexas.edu

